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1 Introduction

Harmonic analysis is concerned with the representation of functions by trigonometric sums or

integrals. These trigonometric representations are usually referred to as Fourier series or Fourier

integrals. Harmonic expansions have proven to be useful in such diverse fields as astronomy,

acoustics, optics, signal processing, image processing, and data compression. In this paper we will

discuss some of the practical aspects involved in using these expansions. The material in these

notes is based largely on the work of Cornelius Lanczos [7, 8]. The discussion of Fast Fourier

Transforms draws heavily on the material in the book Numerical Recipes [11].

1.1 Historical Background

Trigonometric expansions have a long history. The early work in the eighteenth century was fo-

cused primarily on the solution of two problems. The first was the vibration of a taut string an-

chored at both ends. The second was the interpolation of planetary orbits between observation

points.

D’Alembert (1747) derived the following wave equation for the vibrating string problem

c2 @
2u

@x2
D @2u

@t2
(1.1)

where u is the displacement of the string and c is a constant related to the tension of the string. He

showed that a general solution to this wave equation is given by

u.x; t/ D f .ct C x/C g.ct � x/ (1.2)

where f and g are arbitrary twice differentiable functions. Since the displacement at the end x D 0

is zero, it follows that g D �f , i.e.,

u.x; t/ D f .ct C x/ � f .ct � x/: (1.3)

Since the displacement af the other end x D L is also zero, it follows that

f .ct CL/ D f .ct � L/ (1.4)

and hence that f is periodic with period 2L. He gave several examples of periodic functions that

could be used for f including the trigonometric functions.

In 1749 Euler proposed using the function f .x/ D sin n�x
L

in D’Alembert’s solution, yielding
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u.x; t/ D f .ct C x/ � f .ct � x/ D 2 sin
n�x

L
cos

n�ct

L
: (1.5)

He also pointed out that any linear combination of solutions of this form is also a solution.

Daniel Bernoulli (1753) suggested that the infinite series expansion

u.x; t/ D 2

1
X

nD1

an sin
n�x

L
cos

n�ct

L
(1.6)

is a general solution of D’Alembert’s wave equation with fixed end conditions, and hence that any

initial shape function could be expanded in terms of an infinite series of sine functions. Lagrange

(1759) discretized the vibrating string and obtained a discrete sine series as a solution.

In 1777, Euler, working on a problem in astronomy, obtained the coefficients of a cosine series

using orthogonality. That is, he used the orthogonality relations

Z L

0

cos
m�x

L
cos

n�x

L
dx D

8

ˆ

<

ˆ

:

0 form ¤ n

L=2 form D n ¤ 0

L form D n D 0

to show that the coefficients in the series

f .x/ D 1
2
a0 C

1
X

nD1

an cos
n�x

L

are given by

an D 2

L

Z L

0

f .x/ cos
n�x

L
dx:

Euler, Lagrange, Clairaut, and others used trigonometric sums to interpolate planetary orbits be-

tween a given set of observation points. Problems of this type lead naturally to periodic functions.

Since there are only a finite number of observations, the computation of the coefficients in the

trigonometric interpolation expansion led to what we now call the Discrete Fourier Transform.

Clairaut (1754) is credited with providing the first explicit formula for the DFT. He considered

functions with even symmetry which lead to discrete cosine expansions. As we saw previously,

Lagrange (1759) employed discrete sine expansions. Gauss (1805) wrote a paper on trigonometric

interpolation that handled the general case and also contained a fast algorithm for computing the

DFT [6]. His algorithm is equivalent to what is now called the Fast Fourier Transform (FFT). A

number of authors have rediscovered the FFT since the time of Gauss. In particular, Lanczos and
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Danielson (1942) published a nice FFT algorithm for 2n samples that will described in a later sec-

tion [4]. In 1965 Cooley and Tukey published an FFT algorithm for any composite integer number

of samples [3]. Although a number of mathematicians discovered the FFT prior to the paper by

Cooley and Tukey, it was certainly this paper that triggered the widespread usage of the FFT.

Trigonometric series are now named for Fourier, but we have seen that a number of mathematicians

used series of this type prior to Fourier. Fourier did, however, make a number of important con-

tributions to harmonic analysis. Fourier (1822) looked at the problem of describing the evolution

of the temperature T .x; t/ in a thin wire of length � stretched between x D 0 and x D � when

the ends are held at zero temperature. He proposed that the initial temperature T .x; 0/ could be

expanded in a series of sine functions

T .x; 0/ D
1
X

nD1

an sin nx (1.7)

where

an D 2

�

Z �

0

T .x; 0/ sinnx dx: (1.8)

He then showed that the solution to the heat equation with these boundary and initial conditions is

given by

T .x; t/ D
1
X

nD1

ane
�n2t sin nx: (1.9)

In deriving this expression, Fourier used D. Bernoulli’s method of separation of variables, a tech-

nique widely used today. Fourier recognized that the initial temperature distribution could contain

jump discontinuities unlike the initial shape function in the string problem. He suggested that even

discontinuous functions could be expanded in trigonometric series. He also recognized that an

infinite series expansion could represent a function in an interval and disagree with it outside that

interval. Although Fourier was not the first to employ Fourier series expansions, he was the first to

define and use the Fourier integral.

As we have seen, a number of mathematicians (Euler, Lagrange, Bernoulli, Clairaut, Fourier, etc.)

employed trigonometric expansions to solve various problems. However, the arguments used to

support these expansions were more intuitive than rigorous. Dirichlet (1829) examined more care-

fully the convergence of Fourier series expansions. He showed that the N � th partial sum of a

trigonometric expansion could be written as

SN .x/ D 1

2�

Z �

��

sin.N C 1=2/t

sin t=2
f .x � t/ dt: (1.10)
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Using this he was able to show that a function defined on an interval could be expanded in a

Fourier series if it was piecewise continuous and had bounded variation. A function f defined on

an interval Œa; b� is said to have bounded variation if there exists a constant B such that for any

partition a D x0 < x1 < � � � < xN D b of the interval Œa; b� we have

N
X

iD0

jf .xi/ � f .xi�1/j � B:

Jordan showed that a function has bounded variation if and only if it can be expressed as the

difference of two non-decreasing functions.

Fejér (1904) applied a different method for summing infinite series that greatly extended the va-

lidity of harmonic expansions. He showed that it is only necessary to require that f is absolutely

integrable on Œ��; �� if summation of the series is defined differently. He called an infinite series
P1

kD1 ak summable if the sequence

S1;
S1 C S2

2
;
S1 C S2 C S3

3
; : : :

converges. Here Sn is the n-th partial sum Sn D
Pn

kD1 ak . It can be shown that a series that

converges in the conventional sense is also summable with the same limit. There are, however,

divergent series that are summable. For example, the series expansion

1

1C x
D 1 � x C x2 � x3 C : : :

is divergent at x D 1 where the right-hand-side becomes 1 � 1 C 1 � 1 C : : : . However, it is

summable to the correct value 1=2.

As we have seen, harmonic analysis has a long history and has occupied the attention of many

famous mathematicians. This topic has also generated a great deal of controversy. Much of the

controversy centered around the question: What constitutes a function? Initially the concept of

a function was more like what we would call an expression. It included algebraic expressions,

expressions involving known functions such as sines, cosines and logarithms, and eventually in-

cluded some power series. Functions were often closely associated with physical quantities. For

example, D’Alembert, in his study of the wave equation, would only consider functions that were

differentiable. Euler extended the function concept to include functions that could be graphed with

a pencil (without lifting the pencil). These functions were continuous, but could have discontinu-

ous slopes and could be defined by different expressions in different intervals. Fourier extended the

function concept to include functions with step discontinuities. Dirichlet, in addition to analysing

the convergence of Fourier series, also gave a definition of a function that is close to what we use

today. Thus, the concept of a function as well as other concepts like continuity and convergence,

grew out of the study of trigonometric expansions. Let us now look at some of the properties of

harmonic expansions.
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2 Fourier Series

Let f be a real-valued function defined on the interval Œ��; ��. Then the Fourier series expansion

of f is given by

f .x/ D1
2
a0 C a1 cosx C a2 cos 2x C : : :

C b1 sin x C b2 sin 2x C : : :
(2.1)

where

an D 1

�

Z �

��

f .x/ cos nx dx (2.2)

bn D 1

�

Z �

��

f .x/ sin nx dx: (2.3)

The functions sinnx and cosnx are orthogonal in the sense that

Z �

��

sinmx sinnx dx D 0 m ¤ n

Z �

��

sinmx cosnx dx D 0 for all m;n

Z �

��

cosmx cosnx dx D 0 m ¤ n:

At a point x where there is a jump discontinuity, the series in equation (2.1) converges to Œ.f .xC
0/ C f .x � 0/�=2. Here F.x C 0/ and f .x � 0/ are the limits of f .u/ as u approaches x from

above and below respectively. I still find it remarkable that such a wide variety of functions can be

represented on an interval by Fourier series.

2.1 Exponential Form of Fourier Series

The Fourier expansion of f can also be written in the form

f .x/ D
1
X

nD�1

cne
inx (2.4)

where
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cn D 1

2�

Z �

��

f .x/e�inx dx: (2.5)

The coefficients cn are generally complex. The functions einx are orthogonal in the sense that

Z �

��

eimxe�inx dx D 0 m ¤ n:

2.2 Change of Interval

In these notes we will generally restrict ourselves to functions defined on the interval Œ��; ��.
Functions defined on other finite intervals can be reduced to this case by a linear change of variable.

For example, suppose a function f .x/ is defined on the interval Œa; b�. Consider the change of

variable

x D b � a
2�

y C aC b

2
or y D 2�

b � a
�

x � a C b

2

�

(2.6)

where y lies in the interval Œ��; ��. Let Of be the function defined on Œ��; �� by

Of .y/ D f .x/ D f

�

b � a

2�
y C a C b

2

�

: (2.7)

The Fourier expansion of Of can be written

Of .y/ D
1
X

nD�1

cne
iny (2.8)

where cn is given by

cn D 1

2�

Z �

��

Of .y/e�iny dy: (2.9)

Making the change of variables (2.6) in equations (2.8) and (2.9), we get

f .x/ D Of .y/ D
1
X

nD�1

cne
iny D

1
X

nD�1

cne
�i�n.aCb/=.b�a/ei2�nx=.b�a/ (2.10a)

cne
�i�n.aCb/=.b�a/ D 1

b � a

Z b

a

f .x/e�i2�nx=.b�a/ dx: (2.10b)
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If we define

Ocn D cne
�i�n.aCb/=.b�a/; (2.11)

then we have

f .x/ D
1
X

nD�1

Ocne
i2�nx=.b�a/ (2.12a)

Ocn D 1

b � a

Z b

a

f .x/e�i2�nx=.b�a/ dx: (2.12b)

Equations (2.12a) and (2.12b) define the Fourier series expansion of f on the interval Œa; b�.

2.3 Even and Odd Functions

The function f can be expressed as

f .x/ D g.x/C h.x/ (2.13)

where

g.x/ D 1
2
Œf .x/C f .�x/� (2.14)

h.x/ D 1
2
Œf .x/ � f .�x/�: (2.15)

The function g is an even function in the sense that g.�x/ D g.x/. The function h is an odd

function in the sense that h.�x/ D �h.x/. Moreover, if f has a Fourier expansion like that in

equation (2.1), then

g.x/ D 1
2
a0 C a1 cos x C a2 cos 2x C : : : (2.16)

h.x/ D b1 sin x C b2 sin 2x C : : : (2.17)

and

an D 2

�

Z �

0

g.x/ cos nx dx (2.18)

bn D 2

�

Z �

0

h.x/ sinnx dx: (2.19)

If the function f is defined on the interval Œ0:��, then it can be extended to the interval Œ��; �� as

either an odd function or as an even function. Thus, f can be represented on Œ0; �� in terms of a

cosine series or a sine series.
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2.4 Rate of Convergence

In numerical computations we are not only interested in the convergence of an infinite series, but

also in the rate at which it converges. Suppose f is an infinitely differentiable function on the

interval Œ��; �� that can be expanded in a Fourier series

f .x/ D
1
X

nD�1

cne
inx (2.20)

with coefficients cn given by

cn D 1

2�

Z �

��

f .x/e�inx dx: (2.21)

Integrating the right-hand-side of equation (2.21) by parts three times, we obtain

2�cn D i.�1/n
n

Œf .�/� f .��/�C .�1/n
n2

Œf 0.�/� f 0.��/��
i.�1/n
n3

Œf 00.�/ � f 00.��/�C i

n3

Z �

��

f 000.x/e�inx dx: (2.22)

We can learn a lot about the rate of convergence of the Fourier series from equation (2.22). If

f .��/ ¤ f .�/, then the periodic extension of f will have jump discontinuities at the end points

of the interval and the convergence rate will be 1=n. However, if f .��/ D f .�/, the extension

will be continuous and the convergence rate will be at least 1=n2. If, in addition, f 0.��/ D f 0.�/,

then the periodic extension will have a continuous derivative and the convergence rate will be

at least 1=n3. Thus the convergence rate depends strongly on the smoothness of the periodic

extension of f . Knowing this, it is often possible to increase the convergence rate by modifying the

function in such a way as to increase the smoothness of the periodic extension. Several examples

of this will be shown later. A particularly important example is shown in subsection 4.4.1 dealing

with the calculation of impulse responses.

Let us now look at the rate of convergence of Fourier Sine and Cosine expansions. Suppose f is

defined on Œ0; ��. If we extend f to Œ��; �� as an even function, then f can be expanded in a

cosine series, i.e.,

f .x/ D 1
2
a0 C a1 cosx C a2 cos 2x C : : : : (2.23)

The coefficients an are given by

an D 2

�

Z �

0

f .x/ cosnx dx: (2.24)
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Integrating equation (2.24) by parts twice, we obtain

�

2
an D .�1/nf 0.�/� f 0.0/

n2
� 1

n2

Z �

0

f 00.x/ cos nx dx: (2.25)

Unless f satisfies certain end conditions on Œ0; ��, a cosine expansion of f will converge like

1=n2.

Suppose f is extended as an odd function. Then f can be expanded in a sine series, i.e.,

f .x/ D b1 sin x C b2 sin 2x C : : : : (2.26)

The coefficients bn are given by

bn D 2

�

Z �

0

f .x/ sinnx dx: (2.27)

Integrating equation (2.27) by parts three times, we obtain

�

2
bn D f .0/� .�1/nf .�/

n
C .�1/nf 00.�/ � f 00.0/

n3
� 1

n3

Z �

0

f 000.x/ cosnx dx: (2.28)

Unless f satisfies certain end conditions on Œ0; ��, a sine expansion of f will converge like 1=n.

However, if f .0/ D f .�/ D 0, then a sine expansion converges like 1=n3. In general f will not

vanish at 0 and � . However, we can easily modify f so that it does. The linear function u defined

by

u.x/ D f .0/C f .�/� f .0/

�
x (2.29)

has the property that u.0/ D f .0/ and u.�/ D f .�/. Therefore, the function f � u vanishes at 0

and � and hence can be expanded in a sine series with convergence rate 1=n3.
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2.5 Differentiation of Fourier Series and Sigma Factors

Suppose f has the Fourier expansion

f .x/ D
1
X

nD�1

cne
inx: (2.30)

Let fm be the partial sum defined by

fm.x/ D
m�1
X

nD�.m�1/

cne
inx: (2.31)

The residual �m is defined by

�m.x/ D
1
X

nDm

.cne
inx C c�ne

�inx/: (2.32)

Equation (2.32) can be rewritten as follows:

�m D eimx

1
X

nD0

cmCne
inx C e�imx

1
X

nD0

c�m�ne
�inx : (2.33)

Define �m and  m by

�m.x/ D
1
X

nD0

cmCne
inx (2.34)

 m.x/ D
1
X

nD0

c�m�ne
�inx: (2.35)

Then Equation (2.33) can be written

�m.x/ D eimx�m.x/C e�imx m.x/: (2.36)

The functions �m and m are generally smooth functions which do not show any rapid oscillations.

On the other hand, eimx and e�imx are rapidly oscillating functions when m is large. Thus, the

error behaves like a modulated carrier wave of high frequency. If we formally differentiate fm and

compare it with f 0.x/, we obtain the error

12



�0
m.x/ D imeimx�m.x/C eimx� 0

m.x/� ime�imx m.x/C e�imx 0
m.x/: (2.37)

The primed terms arise from differentiation of the modulation and do not cause any serious diffi-

culty. However, the other terms contain the factorm that comes from differentiating the carrier. For

large m these terms can be significant. In fact they can cause the differentiated series to diverge.

Suppose we replace the process of differentiation by the following central difference process:

Dmf .x/ D f .x C �=m/� f .x � �=m/
2�=m

: (2.38)

For large m, Dm is a good approximation to the derivative. Since

e˙im.x˙�=m/ D �e˙imx; (2.39)

it follows that

Dm�m.x/ D �eimxDm �m.x/ � e�imxDm m.x/: (2.40)

Notice that there are no factors of m in this expression since the operatorDm picks out two points

on the carrier wave that are in phase (˙180ı away from the phase at x). Moreover,

Dme
inx D ineinx sin.n�=m/

n�=m
(2.41)

Dme
�inx D �ine�inx sin.n�=m/

n�=m
: (2.42)

Therefore, to apply Dm to the sum defining fm in equation (2.31) we can differentiate the sum

formally term by term and then apply the factor

�n D sin.n�=m/

n�=m
(2.43)

to the terms corresponding to ˙n. The factor �n is 1 for n D 0 and then decreases monotonically

with increasing n. It is almost zero at the highest subscript m � 1. Figure 2.1 is a plot of �n vs. n

for m D 30.

This attenuation of the higher harmonics counteracts the tendency for the series to become diver-

gent. Since any function can be considered as the derivative of its integral, sigma factors can be

applied to any Fourier expansion in order to increase its convergence rate. We will look at the

effect of applying these sigma factors in the following examples.
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Figure 2.1: Plot of �n vs. n form D 30.

Example 1. The formal fourier series of a delta function is given by

ı.x/ D 1

�
.1

2
C cos x C cos 2x C : : : /: (2.44)

This series does not converge at any point. If sigma factors are applied to the first m terms of this

series, we get

ım.x/ D 1

�

�

1
2

C �1 cos x C �2 cos 2x C � � � C �m�1 cos.m� 1/x
�

: (2.45)

A plot of this function for m D 30 is shown in figure 2.2.

In addition to converting divergent Fourier series into convergent ones, sigma factors can also be

used to increase the convergence rate of a slowly convergent Fourier series.

Example 2. Consider the square wave defined by

f .�x/ D �f .x/
f .x/ D 1

2
.0 < x < �/ (2.46)

f .0/ D f .�/ D 0:

This function has the slowly convergent Fourier series expansion

14
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Figure 2.2: Approximation of delta function using sigma factors.

f .x/ D 2

�

�

sin x C sin 3x

3
C sin 5x

5
C : : :

�

: (2.47)

Figure 2.3 shows the approximation to the square wave using 30 terms in the above series.

Notice the Gibbs phenomena near the discontinuities where the approximation overshoots the

square wave and then rings for a while. Figure 2.4 shows the approximation obtained using Fejér’s

arithmetic mean summation method.

This method removes the Gibbs phenomena, but is slowly convergent near the discontinuities.

Figure 2.5 shows the effect of applying sigma factors to the approximation.

This cuts down the Gibbs phenomena considerably and has better convergence near the disconti-

nuities than Fejér’s method.

Sigma factors can sometimes be used to obtain trigonometric series approximations to functions

that are not integrable. For example, the log function lnx is integrable and has a Fourier series

approximation. The function 1=x is not integrable, but is the derivative of lnx. Thus, we can

differentiate the expansion of lnx and apply sigma factors to obtain an approximation to 1=x.

The sigma factor method can be looked upon in a different way. Instead of replacing the differen-

tiation operator d
dx

by the difference operator Dm, we could instead replace the function f by a

locally smoothed function Nf defined by
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Figure 2.3: Fourier sine series approximation of square wave.
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Figure 2.4: Approximation of square wave using Fejér’s arithmetic mean method
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Figure 2.5: Approximation of square wave using sigma factors

Nf .x/ D m

2�

Z �=m

��=m

f .x C t/ dt: (2.48)

Differentiating (2.48), we get

d

dx
Nf .x/ D m

2�

Z �=m

��=m

d

dx
f .x C t/ dt D m

2�

Z �=m

��=m

f 0.x C t/ dt

D m

2�

Z xC�=m

x��=m

f 0.t/ dt D f .x C �=m/� f .x � �=m/
�=m

D Dmf .x/: (2.49)

Notice that as m increases, the interval over which f is averaged gets smaller and smaller.

Extension of the Concept of Convergence Usually when we talk about the sum of an infinite

series such as a Fourier series we are thinking of a fixed sequence of terms a1; a2; : : : , and we

define the sum to be the limit of the partial sums Sn as n ! 1. With the method of sigma factors

the weighted terms actually change as the number of terms in the partial sums increases. Thus, the

single sequence a1; a2; : : : is replaced by the triangular array

17



a11

a21 a22

a31 a32 a33

:::
:::

:::
: : :

of terms. The partial sums Sn are now defined by

Sn D an1 C an2 � � � C ann;

and the sum S is again defined as S D limn!1 Sn. This flexibility in adjusting the terms as their

number increases can often lead to better approximations for a given number of terms.
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2.6 The Trapezoidal Rule and Fourier Series

One of the simplest methods for estimating the area under a curve is to connect equally spaced

ordinates by straight lines and to approximate the area under the curve by the area under the

polygonal line (see figure 2.6).

�� �� ���� ��

�

Figure 2.6: Approximating the area under a curve using the trapezoidal rule.

This method is known as the trapezoidal rule since the area under the polygonal line is the sum of

areas of trapezoids, i.e.,

Z xn

x1

f .x/ dx
:D h

�

f .x1/C f .x2/

2
C f .x2/C f .x3/

2
C : : :

f .xn�1/C f .xn/

2

�

D h
h

1
2
f .x1/C f .x2/C � � � C f .xn�1/C 1

2
f .xn/

i

: (2.50)

In this section we will show the close connection between the trapezoidal rule and trigonomet-

ric expansions. We will use this connection to develop a modified trapezoidal rule with greater

accuracy.

Suppose f is defined on the interval Œ0; 1�. Let us expand f into a Fourier cosine series, i.e.,

f .x/ D 1
2
a0 C a1 cos�x C a2 cos 2�x C : : : : (2.51)

Using the trapezoidal rule we approximate the area A under the curve by the area NA under the

inscribed polygon, i.e.,

NA D 1

n

�

1
2
f .0/C f

�

1

n

�

C � � � C f

�

n � 1
n

�

C 1
2
f .1/

�

: (2.52)
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Substituting (2.51) into (2.52) and rearranging terms, we see that the coefficient of a0 is one half,

the coefficient of the odd term a2k�1 is

1

n

n�1
X

mD1

cos

�

.2k � 1/m�
n

�

;

and the coefficient of the even term a2k is

1

n

n�1
X

mD0

cos

�

2km�

n

�

:

It can be shown that

1

n

n�1
X

mD1

cos

�

.2k � 1/m�
n

�

D 0 (2.53)

and

1

n

n�1
X

mD0

cos

�

2km�

n

�

D
(

0 for k not a multiple of n

1 for k a multiple of n:
(2.54)

Therefore,

NA D 1
2
a0 C a2n C a4n C : : : : (2.55)

The Fourier coefficient a0 is given by

a0 D 2

Z 1

0

f .x/ dx: (2.56)

Therefore,

NA D
Z 1

0

f .x/ dx C a2n C a4n C : : : : (2.57)

It can be seen from equation (2.57) that the error in the trapezoidal rule depends on how fast

the Fourier cosine series converges. For many oscillating integrands the trapezoidal rule gives

surprisingly good results. Consider the function shown in figure 2.7.

Looking at the curve you would think that it would require at least 20 points to get an accurate

value for the integral using the trapezoidal rule. However, since the curve was generated by the

formula
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Figure 2.7: Example function for trapezoidal integration.

f .x/ D cos.�x/ � 2 cos.2�x/C 3 cos.3�x/; (2.58)

it only requires four points to get an exact value. We will now develop a more accurate trapezoidal

rule.

Integrating the expression for a2n by parts, we get

1
2
a2n D

Z 1

0

f .x/ cos.2n�x/ dx D f 0.1/� f 0.0/

4n2
� 1

4n2

Z 1

0

f 00.x/ cos.2n�x/ dx: (2.59)

Thus, a2n converges like 1=n2 unless f 0.1/ D f 0.0/. In general, f doesn’t have this property.

However, the modified function g defined by

g.x/ D f .x/ � f 0.1/� f 0.0/

2
x2 (2.60)

does have the property g0.1/ D g0.0/. Therefore, we can use the trapezoidal rule on g and obtain

an approximation to the integral of f using
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Z 1

0

f .x/ dx
:D 1

n

�

1
2
g.0/C g

�

1

n

�

C � � � C g

�

n � 1
n

�

C 1
2
g.1/

�

C f 0.1/� f 0.0/

2

Z 1

0

x2 dx

D 1

n

�

1
2
g.0/C g

�

1

n

�

C � � � C g

�

n � 1
n

�

C 1
2
g.1/

�

C f 0.1/� f 0.0/

6
: (2.61)

If we substitute the definition of g from (2.60) into (2.61), we get

Z 1

0

f .x/ dx
:D 1

n

�

1
2
f .0/C f

�

1

n

�

C � � � C f

�

n � 1
n

�

C 1
2
f .1/

�

�

f 0.1/ � f 0.0/

2n3

"

n
X

kD1

k2 � n2

2

#

C f 0.1/� f 0.0/

6
: (2.62)

Since

n
X

kD1

k2 D n.nC 1/.2nC 1/

6
; (2.63)

equation (2.62) becomes

Z 1

0

f .x/ dx
:D 1

n

�

1
2
f .0/C f

�

1

n

�

C � � � C f

�

n � 1
n

�

C 1
2
f .1/

�

� f 0.1/� f 0.0/

12n2
: (2.64)

By making a linear change of variable in the integral, we can show that

Z b

a

f .x/ dx
:D b � a

n

�

1
2
f .a/C f

�

a C b � a
n

�

C � � � C f

�

a C .n� 1/b � a
n

�

C 1
2
f .b/

�

�

f 0.b/� f 0.a/

12

�

b � a
n

�2

: (2.65)

This relation is known as the trapezoidal rule with end correction. It usually gives much greater

accuracy than the trapezoidal rule if the values of the derivative f 0 at the end points are known or

can be accurately approximated.

Example 3. Suppose we want to approximate the following integral
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Z 4

0

ex dx:

The following table gives the function values of ex at increments of 0.5:

Table 2.1: Function values of ex

x ex

0.0 1.000000

0.5 1.648721

1.0 2.718281

1.5 4.481689

2.0 7.389056

2.5 12.182494

3.0 20.085537

3.5 33.115452

4.0 54.598150

The exact answer for the integral is given by

Z 4

0

ex dx D e4 � 1 :D 53:59815

The trapezoidal rule gives the approximate answer 54.71015. This corresponds to a relative error

of 2.075%. The trapezoidal rule with end corrections gives the approximate answer 53.59352. This

corresponds to a relative error of -0.0086%.
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3 Chebyshev Polynomials

To expand a function defined on a finite interval in a Fourier series it is necessary to extend this

function in some way in order to make it periodic. The convergence of the series is governed by

how smooth we can make this extension. In practice it is usually difficult to get more smoothness

than continuity of the first derivative. In this section we will discuss a modified form of the Fourier

series that gets much better convergence rates.

3.1 Basic Properties

Suppose f is an infinitely smooth function on the interval Œ�1; 1�, but has no special boundary

conditions. Let us make the change of variable

x D cos � 0 � � � � (3.1)

and define

�.�/ D f .cos �/: (3.2)

The function �.�/ is a genuine periodic function. Furthermore, � is an even function that is

infinitely differentiable on the whole real line. We can expand � in a Fourier cosine series that has

very good convergence properties, i.e.,

�.�/ D 1
2

0 C

1
X

kD1


k cos k�: (3.3)

By the addition formula for cosines, we have

cos.k C 1/� D cos k� cos � � sin k� sin �

cos.k � 1/� D cos k� cos � C sin k� sin �:

Adding these two equations, we obtain the recurrence relation

cos.k C 1/� D 2 cos � cos k� � cos.k � 1/�: (3.4)

Define
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Tk.x/ D cos k�: (3.5)

Then Tk.x/ satisfies the recurrence relation

TkC1.x/ D 2xTk.x/ � Tk�1.x/: (3.6)

Moreover, it follows from the definition in equation (3.5) that T0.x/ D 1 and T1.x/ D x. It follows

from equation (3.6) by induction that Tk.x/ is a polynomial of degree k in x. The recurrence

relation (3.6) can also be used to calculate Tk.x/ for a series of values of k. The polynomials

Tk.x/ are called Chebyshev polynomials of the first kind. It is also easy to see from the recurrence

relation that the highest power of x in Tk.x/ has the coefficient 2k�1. We will now derive an

expression for the remaining polynomial coefficients. Differentiating equation (3.5), we have

T 0
n.x/ D n

sinn�

sin �
and T 00

n .x/ D �n2 cos n�

sin2 �
C n

cos � sin n�

sin3 �
: (3.7)

It follows that Tn.x/ satisfies the differential equation

.1� x2/y 00 � xy 0 C n2y D 0: (3.8)

Let us denote the coefficient of xm in Tn.x/ by cn
m, i.e.,

Tn.x/ D
n
X

mD0

cn
m x

m: (3.9)

Substituting equation (3.9) into equation (3.8), we get

n
X

mD0

m.m� 1/cn
m x

m�2 C
n
X

mD0

.n2 �m2/cn
m x

m D 0;

or equivalently

n�2
X

mD0

.mC 1/.mC 2/cn
mC2 x

m C
n
X

mD0

.n2 �m2/cn
m x

m D 0: (3.10)
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Equating the coefficients of the various powers of x to zero in equation (3.10), we get

cn
n�1 D 0 (3.11a)

cn
m D �.mC 1/.mC 2/

n2 �m2
cn

mC2 m D 0; : : : ; n � 2: (3.11b)

Since we know that cn
n D 2n�1, it follows from equations (3.11a) and (3.11b) that

cn
n�2kC1 D 0 (3.12a)

cn
n�2k D .�1/m n.n � 1/ : : : .n � 2mC 1/

mŠ.n� 1/.n� 2/ : : : .n�m/ 2
n�2m�1: (3.12b)

It should be noted that all the coefficients in Tn.x/ are integers.

In terms of the original variable x, the series expansion in equation (3.3) becomes

f .x/ D 1
2

0 C

1
X

kD1


kTk.x/: (3.13)

Thus, the function f can be expanded in a series of Chebyshev polynomials with a good rate of

convergence. If we truncate this series at k D N , we obtain an N -th order polynomial approx-

imation to f . The error in this approximation can be approximated by the first neglected term


N C1TN C1.x/. Since the Chebyshev polynomials oscillate uniformly over the interval Œ�1; 1�,
the error is very uniformly distributed over the interval. By way of contrast, polynomial approx-

imations obtained by truncating a Taylor series expansion have a very small error near zero that

increases rapidly away from zero.

Since the cosines cosk� satisfy the orthogonality relation

Z �

0

cos k� cos l� d� D 0 k ¤ l; (3.14)

it follows by the change of variable x D cos � that the Chebyshev polynomials satisfy the weighted

orthogonality relation

Z 1

�1

Tk.x/Tl.x/p
1 � x2

dx D 0 k ¤ l: (3.15)

The coefficients 
k in the Chebyshev expansion are given by
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k D 2

�

Z �

0

f .cos �/ cos k� d� D 2

�

Z 1

�1

f .x/Tk.x/
dxp
1 � x2

: (3.16)

In view of the definition of Tn.x/ in equation (3.5), many of the trigonometric identities have their

counterpart in Chebyshev polynomials. For example, the trigonometric identity

cosA cosB D 1
2
Œcos.AC B/C cos.A � B/� (3.17)

leads to the Chebyshev polynomial identity

Tm.x/Tn.x/ D 1
2
ŒTmCn.x/C Tjm�nj.x/�: (3.18)

Another useful identity for Chebyshev polynomials is

Tm

�

Tn.x/
�

D Tmn.x/: (3.19)

To see this, we can write the definition of Tm as

Tm. Ox/ D cosm O� where O� D cos�1 Ox: (3.20)

If we let

Ox D Tn.x/ D cos n� where � D cos�1 x; (3.21)

then

O� D cos�1 cos n� D n� and Tm

�

Tn.x/
�

D cos.mn�/ D Tmn.x/ (3.22)

as was to be proved.

Sometimes it is more convenient to work with the interval Œ0; 1� instead of the interval Œ�1; 1�.
Suppose f is an infinitely smooth function on the interval Œ0; 1�. Let us make the change of

variable

cos � D 2x � 1 or x D 1C cos �

2
D cos2 �

2
(3.23)

and define
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�.�/ D f

�

1C cos �

2

�

: (3.24)

We can expand �.�/ in a fast convergent Fourier cosine series

�.�/ D 1
2

0 C

1
X

kD1


k cos k�: (3.25)

We define

T �
k .x/ D cosk�: (3.26)

Then the series in equation (3.25) can be written

f .x/ D 1
2

0 C

1
X

kD1


kT
�
k .x/: (3.27)

The coefficients in this series are given by


k D 2

�

Z �

0

f

�

1C cos �

2

�

cos k� d� D 4

�

Z 1

0

f .x/T �
k .x/

dxp
1 � x2

: (3.28)

clearly, T �
0 .x/ D 1 and T �

1 .x/ D 2x � 1. Moreover, T �
n .x/ satisfies the recursion relation

T �
kC1.x/ D 2.2x � 1/T �

k .x/ � T �
k�1.x/: (3.29)

Thus, T �
k
.x/ is a polynomial of order k whose highest power of x has the multiplier 22k�1, k > 0.

T �
k
.x/ is called a shifted Chebyshev polynomial. Clearly, T �

k
is related to Tk by T �

k
.x/ D Tk.2x�

1/. Since T2.x/ D 2x2 � 1, it follows from equation (3.19) that

T �
k .x

2/ D Tk.2x
2 � 1/ D Tk

�

T2.x/
�

D T2k.x/: (3.30)

If T �
n .x/ has the polynomial representation

T �
n .x/ D

n
X

mD0

dn
m x

m; (3.31)

then it follows from equation (3.30) that
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T �
n .x

2/ D
n
X

mD0

dn
m x

2m D T2n.x/ D
2n
X

mD0

c2n
m xm D

n
X

mD0

c2n
2m x

2m: (3.32)

Therefore, the polynomial coefficients are related by

dn
m D c2n

2m: (3.33)

Other finite intervals can be reduced to Œ�1; 1� or Œ0; 1� by a linear change of variable.
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3.2 Clenshaw’s Summation Formula

We have seen that the trigonometric functions cos n� and the Chebyshev polynomials Tn.x/ satisfy

two term recurrence relations. Clenshaw (1962) developed an efficient method for summing series

involving functions that satisfy a two term recurrence relation [2]. Suppose we wish to compute

the sum

f .x/ D
N
X

kD0

ck�k.x/ (3.34)

where the functions �n.x/ satisfy the recurrence relation

�nC1.x/ D ˛n.x/�n.x/C ˇn.x/�n�1.x/: (3.35)

We calculate the sequence yN ; : : : ; y1 by the recurrence

yN C2 D yN C1 D 0

yk D ˛k.x/ykC1 C ˇkC1.x/ykC2 C ck k D N;N � 1; : : : ; 1: (3.36)

Solving equation (3.36) for ck and substituting the result into equation (3.34), we obtain

f .x/ D yN�N .x/

D CŒyN �1 � ˛N �1.x/yN ��N �1.x/

D CŒyN �2 � ˛N �2.x/yN �1 � ˇN �1.x/yN ��N �2.x/

D CŒyN �3 � ˛N �3.x/yN �2 � ˇN �2.x/yN �1��N �3.x/

D C

D :::

D C
D CŒy2 � ˛2.x/y3 � ˇ3.x/y4��2.x/

D CŒy1 � ˛1.x/y2 � ˇ2.x/y3��1.x/

D CŒc0 C ˇ1.x/y2 � ˇ1.x/y2��0.x/: (3.37)

It can be seen from equation (3.37) that the terms multiplying each yk (k D N; : : : ; 2) sum to zero

in view of the recurrence relation (3.35). Thus, we are left with

f .x/ D y1�1.x/C Œc0 C ˇ1.x/y2��0.x/: (3.38)
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This summation method is a generalization of the nesting method commonly used to evaluate

polynomials.
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3.3 Telescoping Power Series

In general it is very difficult to get the coefficients of a Chebyshev series using the integral ex-

pressions in equations (3.16) and (3.28). In this, section we will describe another way to obtain

approximate Chebyshev expansions. Suppose we are given a polynomial approximation to a func-

tion f defined on Œ0; 1�, i.e.,

f .x/
:D a0 C a1x C � � � C aNx

N : (3.39)

This may have been obtained, for example, by truncating a Taylor series. In defining the shifted

Chebyshev polynomials T �
n .x/ we obtained the relation x D cos2 �=2. Using this relation, we can

compute the powers of x as follows

xn D cos2n �

2
D
�

ei�=2 C e�i�=2

2

�2n

D 2

4n

"

cos n� C
 

2n

1

!

cos.n � 1/� C � � � C
 

2n

n

!

1

2

#

D 2

4n

"

T �
n .x/C

 

2n

1

!

T �
n�1.x/C � � � C 1

2

 

2n

n

!

T �
0 .x/

#

: (3.40)

The first six powers of x are given by

1 D T �
0 .x/

x D T �
0 .x/C T �

1 .x/

2

x2 D 3T �
0 .x/C 4T �

1 .x/C T �
2 .x/

8

x3 D 10T �
0 .x/C 15T �

1 .x/C 6T �
2 .x/C T �

3 .x/

32

x4 D 35T �
0 .x/C 56T �

1 .x/C 28T �
2 .x/C 8T �

3 .x/C T �
4 .x/

128

x5 D 126T �
0 .x/C 210T �

1 .x/C 120T �
2 .x/C 45T �

3 .x/C 10T �
4 .x/C T �

5 .x/

512

x6 D 462T �
0 .x/C 792T �

1 .x/C 495T �
2 .x/C 220T �

3 .x/C 66T �
4 .x/C 12T �

5 .x/C T �
6 .x/

2048

Substituting the expressions for the various powers of x into equation (3.39) and rearranging terms,

we can obtain an expansion of f .x/ in terms of the shifted Chebyshev polynomials. The higher

order terms in this expansion often have small coefficients and can be neglected with little loss of
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accuracy. In this way we can obtain a lower order polynomial approximation with almost the same

accuracy.

Example 4. Let f .x/ be defined by

f .x/ D 1 � x C x2 � x3 C x4 � x5 C x6: (3.41)

You might recognize this as the truncated Taylor series expansion of 1=.1C x/. Substituting the

expressions for the powers of x in terms of the shifted Chebyshev polynomials T �
n .x/ into the

above polynomial and rearranging terms, we obtain

f .x/ D a0 C a1T
�
1 .x/C � � � C a6T

�
6 .x/ (3.42)

where the coefficients an are given by

n an

0 0.81542969

1 -0.05468750

2 0.16357422

3 0.05078125

4 0.02050781

5 0.00390625

6 0.00048828

Figure 3.1 shows the effect of dropping x6 in equation (3.41) and Figure 3.2 shows the effect of

dropping the T �
6 .x/ term in equation (3.42).

Clearly, dropping x6 in equation (3.41) leads to large errors, whereas dropping the T �
6 .x/ term

in equation (3.42) makes very little difference. Figure 3.3 shows the effect of dropping both the

T �
5 .x/ and the T �

6 .x/ terms in equation (3.42). Again the resulting approximation is quite good.

Figure 3.4 shows the effect of dropping the T �
4 .x/, the T �

5 .x/, and the T �
6 .x/ terms in equation

(3.42). In this case we can see some deviation of the approximation.

Although this telescoping method allows us to express f .x/ in terms of lower order polynomials,

we do not increase the accuracy. If the polynomial f .x/ is an approximation to some function,

the Chebyshev approximations obtained in this way will have no better accuracy than the original

polynomial. In this example the polynomial f .x/ is a poor approximation to 1=.1C x/.
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Figure 3.1: The effect of dropping x6 in polynomial defining f .x/
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Figure 3.2: The effect of dropping T �
6 .x/ term in expansion of f .x/.
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Figure 3.3: The effect of dropping T �
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6 .x/ terms in expansion of f .x/.
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6 .x/ terms in expansion of f .x/.
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3.4 The Lanczos Tau Method

Lanczos developed the � method to obtain polynomial approximations to functions y.x/ that are

solutions of a linear differential or algebraic equation having coefficients that are rational functions

of x. By multiplying through by an appropriate polynomial, differential or algebraic equations of

this type can be reduced to ones having polynomial coefficients. The Tau Method makes use

of Chebyshev polynomials to obtain an even error distribution over the interval of interest. It is

applicable to many of the standard functions used in mathematical physics. We will illustrate the

method with an example. Consider the function f .x/ D 1=.1C x/ on the interval Œ0; 2�. Since the

shifted Chebyshev polynomials are defined on Œ0; 1�, we will instead work with the scaled function

y.x/ D f .2x/ D 1=.1C 2x/ on Œ0; 1�. This function satisfies the differential equation

.1C 2x/y 0 C 2y D 0 (3.43)

on the interval Œ0; 1� with the initial condition y.0/ D 1. One of the standard ways of solving

equations of this type is to substitute a power series representation of y into the differential equation

and to obtain a recurrence relation for the power series coefficients. Assume y has a power series

representation

y.x/ D
1
X

nD0

anx
n: (3.44)

Substituting this power series expression into equation (3.43), we obtain

1
X

nD1

nanx
n�1 C 2

1
X

nD1

nanx
n C 2

1
X

nD0

anx
n D 0

or equivalently

1
X

nD0

.nC 1/anC1x
n C 2

1
X

nD1

nanx
n C 2

1
X

nD0

anx
n D 0:: (3.45)

Equating the coefficients of each power of x to zero, we obtain

a1 C 2a0 D 0 (3.46a)

.nC 1/anC1 C 2.nC 1/an D 0 n D 1; 2; : : : (3.46b)

Since y.0/ D 1, it follows that a0 D 1. The remaining coefficients an can be computed using the

recurrence relations in equation (3.46). This leads to the power series representation
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y D 1

1C 2x
D 1 � 2x C .2x/2 � .2x/3 C : : : : (3.47)

Suppose we truncate the power series and consider the polynomial approximation

y.x/ D
N
X

nD0

anx
n: (3.48)

Substituting this polynomial into the differential equation, we get

N
X

nD1

nanx
n�1 C 2

N
X

nD1

nanx
n C

N
X

nD0

anx
n D 0

or equivalently

N �1
X

nD0

.nC 1/anC1x
n�1 C 2

N
X

nD1

nanx
n C 2

N
X

nD0

anx
n D 0: (3.49)

Equating the coefficients of each power of x to zero, we obtain

a1 C 2a0 D 0 (3.50a)

.nC 1/anC1 C 2.nC 1/an D 0 n D 1; 2; : : : ; N � 1 (3.50b)

2.N C 1/aN D 0: (3.50c)

We obviously can’t require that equation (3.50c) hold for this would force all the an to be zero.

Since this equation comes from setting the coefficient of the N -th power of x to zero, Lanczos had

the idea of putting an error term on the right hand side of the differential equation that has the form

�xN , i.e.,

.1C 2x/y 0 C 2y D �xN : (3.51)

If we substitute our polynomial into this equation, we obtain

a1 C 2a0 D 0 (3.52a)

.nC 1/anC1 C 2.nC 1/an D 0 n D 1; 2; : : : ; N � 1 (3.52b)

2.N C 1/aN D �: (3.52c)
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Starting with a0 D 1, we can compute a1; : : : ; aN using equations (3.52a)–(3.52b). The error

coefficient � can then be computed from equation (3.52c). This gives the truncated Taylor series

expansion of y.x/ and a � value of 2.N C 1/.�2/N . This � value is quite large since we are going

past the radius of convergence of the Taylor series.

The problem with an error term of the form �xN is that the error is very small near x D 0, but

increases rapidly near x D 1. Lanczos noted that we could use any polynomial of degree N

in place of xN for the error term. A polynomial with evenly distributed values over Œ0; 1� is the

Chebyshev polynomial T �
N .x/. With this choice, the approximate differential equation becomes

.1C 2x/y 0 C 2y D �T �
N .x/: (3.53)

If

T �
N .x/ D

N
X

nD0

cN
n x

n; (3.54)

then substituting the polynomial expression for y into equation (3.53) gives

a1 C 2a0 D �cN
0 (3.55a)

.nC 1/anC1 C 2.nC 1/an D �cN
n n D 1; 2; : : : ; N � 1 (3.55b)

2.N C 1/aN D �cN
N : (3.55c)

We can obtain aN as a multiple of � from equation (3.55c). Starting with this expression for aN

we can obtain aN �1; : : : ; a1 as multiples of � from equation (3.55b). Since a0 D 1 and a1 is now

a known multiple of � , we can solve equation (3.55a) for � . Having � , all the an can then be

determined. For N D 6 we obtain an approximation

y.x/
:D a0 C a1x C � � � C a6x

6 (3.56)

where the coefficients are given by

and � D 0:0061734. This approximation along with the exact expression are plotted in figure 3.5.

In this plot the x values have been scaled to the interval Œ0; 2�. The relative error is plotted in

figure 3.6. Notice that we have obtained a good polynomial approximation of 1=.1C x/ beyond

the radius of convergence of the Taylor series expansion.

The technique we have illustrated is known as Lanczos’ tau method. It can be used to obtain

polynomial approximations to many of the important functions in mathematical physics.

In some problems it will be necessary to use more than one error term with corresponding � factors.

Consider, for example, the initial-value problem
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n an

0 1.0000000

1 -1.9938266

2 3.7654114

3 -5.8022753

4 6.0731987

5 -3.6123115

6 0.9030779

.1C x2/y 0 C y D 0 with y.0/ D 1: (3.57)

We will approximate y by a polynomial in x, i.e.,

y.x/ D
N
X

nD0

anx
n: (3.58)

Substituting this polynomial expression into equation (3.57), we get

N
X

nD1

nanx
n�1 C

N
X

nD1

nanx
nC1 C

N
X

nD0

anx
n D 0 (3.59)

or equivalently

N �1
X

nD0

.nC 1/anC1x
n C

N C1
X

nD2

.n� 1/an�1x
n C

N
X

nD0

anx
n D 0: (3.60)

Equating the coefficients of each power of x to zero, we obtain

a1 C a0 D 0 (3.61a)

2a2 C a1 D 0 (3.61b)

.nC 1/anC1 C .n� 1/an�1 C an D 0 n D 1; 2; : : : ; N � 1 (3.61c)

.N � 1/aN �1 C aN D 0 (3.61d)

NaN D 0: (3.61e)

We obviously can’t require that equations (3.61d) and (3.61e) hold, since that would force all of

the an to be zero. Since equations (3.61d) and (3.61e) come from equating coefficients of xN and

xN C1, we could put an error term of the form
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�1T
�
N .x/C �2T

�
N C1.x/

on the right-hand-side of the differential equation (3.57). However, it is simpler and almost as

effective to use an error term of the form

T �
N .x/.�1 C �2x/:

Thus, the modified problem becomes

.1C x2/y 0 C y D T �
N .x/.�1 C �2x/ with y.0/ D 1: (3.62)

If T �
N .x/ has the form shown in equation (3.54), then the coefficients an must satisfy

a1 C a0 D �1c
N
0 (3.63a)

2a2 C a1 D �1c
N
1 C �2c

N
0 (3.63b)

.nC 1/anC1 C .n � 1/an�1 C an D �1c
N
n C �2c

N
n�1 n D 1; 2; : : : ; N � 1 (3.63c)

.N � 1/aN �1 C aN D �1c
N
N C �2c

N
N �1 (3.63d)

NaN D �2c
N
N : (3.63e)

Using equations (3.63d) and (3.63e), we can express aN and aN �1 as linear combinations of �1

and �2. Equation (3.63c) can then used to express aN �2; : : : ; a1 as linear combinations of �1 and

�2. Since a0 D 1, equations (3.63a) and (3.63b) become a system of two equations that can be

solved for �1 and �2. Having �1 and �2, we can then go back and get a1; : : : ; aN . Often the number

of tau factors that are needed can be reduced by a change of variable. It is rare when more than

two tau factors are needed. The tau method can also be applied to algebraic equations such as

.x C 1/y D 1:
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3.5 Operational Approach to Tau Method

Following Lanczos’ introduction of the Tau Method, a number of authors have presented modifi-

cations and alternative approaches [1, 5, 9, 10]. Clenshaw, instead of using expansions in terms

of powers, developed solutions in terms of sums of Chebyshev polynomials directly [1]. He ex-

panded the highest order derivative in terms of Chebyshev polynomials and then used recursion

relations for integrals of Chebyshev polynomials to generate lower order derivatives. In most cases

this method is not simple to implement and will not be discussed here. Ortiz, a student of Lanczos,

developed an operational approach to the tau method that greatly simplified its implementation in

software [10]. I will summarize the operational approach in this section. It is called an operational

method since it replaces the differential equation problem by a problem in matrix algebra.

A differential equation with polynomial coefficients can be written as

Dy D
�
X

iD0

pi .x/
d iy

dxi
D 0: (3.64)

We seek to approximate the solution of this differential equation along with the following set of

auxiliary conditions

fk.y/ D sk k D 1; : : : ; �: (3.65)

Here each fk is a linear functional (linear function mapping functions into real numbers) operating

on y. The usual boundary and initial-value conditions can be put in this form. We will attempt to

solve the differential equation problem in terms of sums involving a set of independent polynomials

v0.x/; v1.x/; : : : where the polynomial vk.x/ has order k. Possible choices for these polynomials

are the Chebyshev polynomials or the Legendre Polynomials. Let yn denote the approximate

solution

yn.x/ D a0v0.x/C a1v1.x/C � � � C anvn.x/: (3.66)

Let N be the highest power of x occurring in Dyn.x/. If N < n, we set N D n. For example,

substitution of the polynomial yn.x/ of order n into the differential operator x3y 0 � 2y, results

in a polynomial of order nC 2. Thus, in this case, N D n C 2. In the material that follows we

will only consider polynomials of order less than or equal to N . The reason we defined N so that

N � n is that we will require that the polynomial yn.x/ of order n satisfy the auxiliary conditions

of equation (3.65) as well as approximating the solution of the differential equation. Equation

(3.66) can be written in the matrix form

yn.x/ D a
T
n v; (3.67)

where an and v are the .N C 1/-vectors given by
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a
T
n D .a0; a1; : : : ; an; 0; : : : ; 0/ and v

T D
�

v0.x/; v1.x/; : : : ; vN .x/
�

(3.68)

and the superscript T denotes matrix transpose. The next step is to represent differentiation of

polynomials and multiplication of polynomials by powers of x as matrix operations. If p.x/ is the

polynomial

p.x/ D ˛0 C ˛1x C � � � C ˛nx
n; (3.69)

then we can write this polynomial in the matrix form

p.x/ D ˛
T

x; (3.70)

where ˛ and x are the N C 1 vectors given by

˛
T D .˛0; ˛1; : : : ; ˛n; 0; : : : ; 0/ and x

T D .1; x; x2; : : : ; xN /: (3.71)

It follows that

d

dx
p.x/ D ˛1 C 2˛2x C 3˛3x

2 C � � � C n˛nx
n�1

D ˛
T

� x; (3.72)

where � is the matrix

� D

�
0 0 0 � � � 0

1 0 0 � � � 0

0 2 0 � � � 0
:::
: : :

: : :
: : :

:::

0 � � � 0 N 0

�
: (3.73)

It follows by induction that

dk

dxk
p.x/ D ˛

T
�

k
x: (3.74)

Similarly
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xp.x/ D ˛0x C ˛1x
2 C � � � C ˛nx

nC1

D ˛
T

M x; (3.75)

where M is the matrix

M D

�
0 1 0 � � � 0

0
: : :

: : :
:::

:::
: : : 1 0

:::
: : : 1

0 � � � � � � 0 0

�
: (3.76)

Again, it follows by induction that

xkp.x/ D ˛
T

M
k

x: (3.77)

The operations of multiplication by x and differentiation can be combined as follows

xi d
j

dxj
p.x/ D xi

˛
T

�
j
x D ˛

T
�

j
M

i
x: (3.78)

We will now apply the above results to the approximationyn.x/. The polynomials v0.x/; : : : ; vN .x/

involved in the definition of yn are independent and the polynomial vk.x/ has order k. Therefore,

there is a nonsingular lower triangular matrix V such that

v D Vx: (3.79)

For the Chebyshev polynomials the matrix V is given by

V D

�
1

0 1

�1 0 2

0 �3 0 4

1 0 �8 0 8

� � � � � � � � �

�
: (3.80)

Let us denote them-th row of V by Vm � and let V� m denote them-th column of V . The polynomials

vk.x/ can be written as
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vk.x/ D .Vk �/x k D 0; : : : ; N: (3.81)

Therefore, it follows that

xi d
j

dxj
yn.x/ D a0x

i d
j

dxj
v0.x/C � � � C anx

i d
j

dxj
vN .x/

D a0V0 � �
j
M

i
x C � � � C anVn � �

j
M

i
x

D a
T

V�
j
M

i
x D a

T
V�

j
M

i
V

�1
v: (3.82)

In view of equation (3.82), we have

Dyn D a
T

V

�
X

iD0

�
ipi .M /V �1

v: (3.83)

If we define

˘ D V

�
X

iD0

�
ipi .M /V �1;

then equation (3.83) can be written

Dyn D a
T

˘v

D .aT
˘� 0/v0.x/C � � � C .aT

˘� N /vN .x/: (3.84)

We will require that yn satisfy the � auxiliary conditions given in equation (3.65). Thus,

fk.yn/ D fk

�

n
X

iD0

aivi

�

D
n
X

iD0

aifk.vi/ D sk k D 0; : : : ; �: (3.85)

This gives us � linear equations for the unknown coefficients a0; : : : ; an. We need nC 1 equations

to determine these coefficients. To get the remaining n � � C 1 equations we set

a
T

˘�0 D a
T

˘� 1 D � � � D a
T

˘� n�� D 0 (3.86)

in equation (3.84). Equations (3.85) and (3.86) give us n C 1 linear equations that completely

determine the coefficients a0; : : : ; an. With this choice of coefficients yn satisfies
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Dyn D .aT
˘�n��C1/vn��C1.x/C � � � C .aT

˘� N /vN .x/: (3.87)

The coefficients multiplying the polynomials vn��C1.x/; : : : ; vN .x/ on the right-hand-side of equa-

tion (3.87) are Lanczos’ tau values. This operational approach is quite easy to implement on a

computer.

46



3.6 Generalized Tau Method

The tau method is only directly applicable if the coefficients of the given differential or algebraic

equation are rational functions of x. Consider a general linear differential equation

Dy D 0 (3.88)

on the interval [0,1]. We want to approximate the solution of this equation by a polynomial yp of

the form

yp.x/ D
p
X

nD0

anx
n: (3.89)

As in the standard tau method we replace the right hand of equation (3.88) by an error term of the

form

T �
N .x/.�1 C �2x C � � � C �mx

m�1/:

Thus, equation (3.88) is replaced by

Dy D T �
N .x/.�1 C �2x C � � � C �mx

m�1/: (3.90)

The polynomial yp has pC1 unknown coefficients a0; a1; : : : ; ap. If there are � initial or boundary

conditions given, then there are pC 1� � free parameters at our disposal. We set N D pC 1� �
in equation (3.90). We substitute yp into equation (3.90) and require that the resulting equation

Dyp D T �
N .x/.�1 C �2x C � � � C �mx

m�1/ (3.91)

be satisfied at the N zeroes of T �
N .x/. The right-hand-side of equation (3.91) is zero at these N

evaluation points. This gives us N linear equations in the coefficients a0; a1; : : : ; ap that along

with the � initial or boundary conditions provides a set of p C 1 linear equations to be solved for

the p C 1 coefficients. The zeroes xk of T �
N .x/ are given by

xk D 1C cosŒ.2k � 1/�=.2N/�

2
k D 1; 2; : : : ; N: (3.92)
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4 Fourier Integral

The Fourier integral represents a function h (defined on the real line) by

h.t/ D
Z 1

�1

H.f /ei2�f t df (4.1)

where

H.f / D
Z 1

�1

h.t/e�i2�f t dt: (4.2)

The functions h and H are called a Fourier transform pair. The Fourier integral exists if h is

absolutely integrable on the real line and is of bounded variation on every finite subinterval.

4.1 Properties of Fourier Transforms

It is easily shown that the Fourier transform has the properties shown in the table below:

Table 4.1: Properties of Fourier Transforms

If . . . then . . .

h.t/ is real H.�f / D H.f /

H.�f / D H.f / h.t/ is real

h.t/ is imaginary H.�f / D �H.f /
H.�f / D �H.f / h.t/ is imaginary

h.t/ is even H.f / is even

H.f / is even h.t/ is even

h.t/ is odd H.f / is odd

H.f / is odd h.t/ is odd

h.t/ is real and even H.F / is real and even

H.F / is real and even h.t/ is real and even

h.t/ is real and odd H.F / is imaginary and odd

H.F / is imaginary and odd h.t/ is real and odd

Continued on next page
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If . . . then . . .

h.t/ is imaginary and even H.F / is imaginary and even

H.F / is imaginary and even h.t/ is imaginary and even

h.t/ is imaginary and odd H.F / is real and odd

H.F / is real and odd h.t/ is imaginary and odd

h.t/ D df .t/=dt H.f / D i2�f F.f / differentiation

Oh.t/ D h.at/ OH.f / D H.f=a/= jaj time scaling

OH.f / D H.bf / Oh.t/ D h.t=b/= jbj frequency scaling

Oh.t/ D h.t � t0/ OH.f / D e�i2�f t0H.f / time shifting

OH.f / D H.f � f0/ Oh.t/ D ei2�f0th.t/ frequency shifting

h.t/ D
R1

�1
f .�/g.t � �/ d� H(f)=F(f)G(f) convolution to product

H(f)=F(f)G(f) h.t/ D
R1

�1
f .�/g.t � �/ d� product to convolution

In these formulas, a bar over a quantity indicates complex conjugate.

4.2 Relation of Fourier Transform to Fourier Series

The Fourier transform of h is given by

H.f / D
Z 1

�1

h.t/e�i2�f t dt: (4.3)

On the interval Œ�L;L�, h has the Fourier series expansion

h.t/ D
1
X

nD�1

ane
in�t=L (4.4)

where

an D 1

L

Z L

�L

h.t/e�i�nt=L dt: (4.5)

Comparing equations (4.3) and (4.5), we see that
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Lan D H
� n

2L

�

�
Z 1

L

h.t/e�i�nt=L dt �
Z �L

�1

h.t/e�i�nt=L dt: (4.6)

If h is absolutely integrable, the integrals on the right-hand-side of equation (4.6) can be made

arbitrarily small for sufficiently large L. It is in this sense that the Fourier series coefficients an

can be used to approximate the Fourier transform at the frequencies n
2L

.

4.3 Asymptotic Behavior

In physical problems we usually have h.t/ D 0 for t < 0. In this case

H.f / D
Z 1

0

h.t/e�i2�f t dt: (4.7)

If h is sufficiently smooth and converges sufficiently rapidly to zero as t ! 1, we can integrate

equation (4.7) by parts three times to obtain

H.f / D h.0/

i2�f
C h0.0/

.i2�f /2
C h00.0/

.i2�f /3
C 1

.i2�f /3

Z 1

0

h000.t/e�i2�f t dt: (4.8)

We can see from equation (4.8) that the behavior of H.f / for large f is related to the behavior

of h.t/ for small t . Thus, high frequency approximations can often be used to obtain small time

approximations and vice versa.
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4.4 Input-Output Relations

In many linear problems it is easier to solve the problem in the frequency domain than in the time

domain. This is due largely to the fact that time derivatives become algebraic expressions in the

frequency domain. The inverse Fourier transform can be used to relate the solution in the time

domain to the solution in the frequency domain. In such problems we are often able to relate an

output frequency functionG.f / to and input frequency function F.f / by a linear relation

G.f / D R.f /F.f /: (4.9)

The function R.f / is called a transfer function. Relations of this type are common in electric

network problems. The Fourier transform of this relation is given by

g.t/ D
Z 1

�1

K.t � �/f .�/ d� (4.10)

where

K.t/ D
Z 1

�1

R.f /ei2�f t dt: (4.11)

The function K.t/ is called the impulse response since it is the output obtained from a delta func-

tion input. Since the output at time t can’t depend on the input at times greater than t , it follows

that

K.t/ D 0 for t < 0. (4.12)

Thus,

g.t/ D
Z t

�1

K.t � �/f .�/ d�: (4.13)

If the input f .t/ is zero for t < 0, then

g.t/ D
Z t

0

K.t � �/f .�/ d�: (4.14)

Taking the inverse transform of equation (4.11) and using the relation in equation (4.12), we obtain

R.f / D
Z 1

0

K.t/e�i2�f t dt: (4.15)
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Let A and B be the real and imaginary parts of R, i.e.,

R.f / D A.f /C iB.f /: (4.16)

Then, it follows from equation (4.15) that

A.f / D
Z 1

0

K.t/ cos.2�f t/ dt (4.17)

and

B.f / D �
Z 1

0

K.t/ sin.2�f t/ dt: (4.18)

It is clear from equations (4.17) and (4.18) that A.f / is even [A.�f / D A.f /] and B.f / is

odd [B.�f / D �B.f /]. Writing equation (4.11) in terms of A and B and using the symmetry

properties of A and B , we obtain

K.t/ D 2

Z 1

0

A.f / cos.2�f t/ dt � 2
Z 1

0

B.f / sin.2�f t/ dt: (4.19)

It follows from equation (4.12) that

Z 1

0

A.f / cos.2�f t/ dt �
Z 1

0

B.f / sin.2�f t/ dt D 0 for t < 0: (4.20)

Replacing t by �t , we obtain the relation

Z 1

0

A.f / cos.2�f t/ dt C
Z 1

0

B.f / sin.2�f t/ dt D 0 for t > 0: (4.21)

Combining equations (4.19) and (4.21), we get

K.t/ D 4

Z 1

0

A.f / cos.2�f t/ dt D �4
Z 1

0

B.f / sin.2�f t/ dt: (4.22)

Thus, the impulse response can be obtained from either the real or the imaginary part of the transfer

function R. However, the convergence properties of the integrals in equation (4.22) can be very

different.
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4.4.1 Calculation of Impulse Responses

The impulse response is generally zero for t < 0, jumps to a finite value at t D 0, and decays

rapidly to zero as t ! 1. In order to approximate the impulse response it will be necessary to

truncate the response at some T > 0. We will choose T so that K.T /
:D 0. If we expand K in a

Fourier series on the interval Œ0; T �, the series will be slowly convergent [like 1/n] because of the

jump at t D 0. Since the Fourier series coefficients approximate the Fourier transform, the Fourier

transform converges slowly [like 1/f]. In many problems an asymptotic analysis gives us the value

K0 of K at t D 0. We can use this information to improve the convergence. Define

OK.t/ D K.t/ �K0e
�˛t for t � 0 (4.23)

where ˛ is chosen so that the exponential term is approximately zero at t D T . The function OK
is zero at t D 0 and is approximately zero at t D T . Thus, we can obtain 1=n3 convergence by

extending OK to Œ�T; T � as an odd function. The Fourier transform OR of the extended function OK
is given by

OR.f / D
Z 1

�1

OK.t/e�i2�f t dt

D
Z 1

0

OK.t/e�i2�f t dt �
Z 1

0

OK.t/ei2�f t dt

D 2i Imag

Z 1

0

OK.t/e�i2�f t dt

D 2i Imag

Z 1

0

K.t/e�i2�f t dt � 2iK0 Imag

Z 1

0

e�˛te�i2�f t dt

D 2i ImagR.f /C i
4�K0f

˛2 C .2�f /2
: (4.24)

Thus, given R.f /, we can compute OR.f / from equation (4.24). Taking the inverse transform of
OR.f / gives us OK.t/. We can then calculate K.t/ from equation (4.23).

The application of this technique to a problem in acoustics is illustrated in figure 4.1 [12]. Here we

have the pressure response due to an impulse acceleration of a radiating surface element. Notice

that the response is zero for negative time, jumps to a finite value at time zero, and then decays to

zero at large times. Figure 4.2 shows the same time response computed by numerically performing

an inverse Fourier transform of the frequency response without employing the modifications sug-

gested in this section. Notice that the response is not as smooth and doesn’t have the right behavior

for small times. Since there is a jump at time zero, the inverse Fourier transform converges to the

average of the right and left hand limits (0.5 in this case).

53



0 1 2 3 4 5

     normalized time

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

  
  
  
n
o
rm

al
iz

ed
 i

m
p
u
ls

e 
re

sp
o
n
se

 

Figure 4.1: Pressure impulse response computed by the method described in this section.
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Figure 4.2: Pressure impulse response calculated by a direct inversion of the frequency

response.
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5 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) does not involve functions of a continuous variable as is the

case with Fourier Series and Fourier Transforms, but only involves a finite set of data points. For

this reason it plays a dominant role in fields such as digital signal processing. We will see that the

DFT can be interpreted as an approximation to Fourier Series and Fourier Transforms, but it is also

a legitimate transform in its own right. It has many properties that are analogous to its continuous

counterparts. However, the derivation of these properties is much simpler in the discrete case. We

will find some cases, such as the connection of the DFT with finite order rotational symmetry,

where the DFT produces an exact answer and not an approximation.

5.1 Interpolation and the Origin of the DFT

As was mentioned in the introduction, the Discrete Fourier Transform arose in planetary orbit

interpolation problems. Suppose that a planetary orbit of interest lies in a plane and let us choose

an origin such as the earth or the sun. Let � be an angular variable around the origin and let r.�/

be the distance from the origin to the planet at the angle � . Clearly r.�/ is periodic with period

2� . Suppose we attempt to interpolate r.�/ by a function Or.�/ of the form

Or.�/ D a0 C
N
X

nD1

an cos n� C
N
X

nD1

bn cos n�; (5.1)

i.e., we seek to interpolate r.�/ by a trigonometric sum. The function Or can also be written in the

exponential form

Or.�/ D
N
X

mD�N

cme
im� (5.2)

where c�m is the complex conjugate of cm. Suppose we have 2N C 1 observations that are equally

spaced in angle. We will denote the observation angles by �0; : : : ; �2N where

�k D 2�k

2N C 1
k D 0; : : : ; 2N

and the observed values by r0; : : : ; r2N . Since Or is an interpolation formula, it must coincide with

the observed values at the observation points, i.e.,

Or.�k/ D r.�k/ D rk k D 0; : : : ; 2N; (5.3)

and hence that
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rk D
N
X

mD�N

cme
im�k D

N
X

mD�N

cme
i2�mk=.2N C1/ k D 0; : : : ; 2N: (5.4)

The complex exponential in equation (5.4) is periodic in m with period 2N C 1. Let us extend

the sequence c�N ; : : : ; cN to a periodic sequence with period 2N C 1. Then we can allow m in

equation (5.4) to range over any set of 2N C 1 consecutive integers. In particular,

rk D
2N
X

mD0

cme
i2�mk=.2N C1/ k D 0; : : : ; 2N: (5.5)

If we define M D 2N C 1, then equation (5.5) can be written

rk D
M�1
X

mD0

cme
i2�mk=M k D 0; : : : ;M � 1: (5.6)

The coefficients cm are the solution of the system of linear equations (5.6). We will show that the

complex exponentials satisfy a discrete orthogonality condition that simplifies the solution of this

system of equations. Let

sm.�/ D eim� : (5.7)

Then

M�1
X

kD0

sm.�k/sn.�k/ D
M�1
X

kD0

ei2�.m�n/k=M D 1 � ei2�.m�n/

1 � ei2�.m�n/=M
D 0 m ¤ n (5.8a)

D M m D n (5.8b)

where the overbar denotes complex conjugate. Here we have used the following expression for the

sum of a geometric sequence

M�1
X

kD0

xk D
(

.1 � xM /=.1� x/ x ¤ 1

M x D 1:
(5.9)

This expression for the sum of a geometric series can easily be derived as follows:

1. Let S D
PM�1

kD0 x
k D 1C x C x2 C � � � C xM�1.
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2. Then xS D x C x2 C � � � C xM�1 C xM .

3. Subtracting xS from S , we get .1� x/S D 1 � xM (the other powers of x cancel).

4. As long as x ¤ 1 we can solve for S and obtain S D .1 � xM /=.1� x/.

5. Clearly
PM�1

kD0 x
k D M when x D 1.

The system of equations (5.6) can be written

rk D
M�1
X

mD0

cmsm.�k/ k D 0; : : : ;M � 1: (5.10)

Using the orthogonality relations in equation (5.8) , we obtain

M�1
X

kD0

rksn.�k/ D
M�1
X

mD0

cm

M�1
X

kD0

sm.�k/sn.�k/ D Mcn (5.11)

or

Mcn D
M�1
X

kD0

rke
�i2�nk=M : (5.12)

Once we have computed c0; : : : ; cM�1 using equation (5.12), then the values c�n in equation (5.4)

can be obtained using the periodicity of the sequence cn. In view of equation (5.6), we have

rk D 1

M

M�1
X

nD0

Mcne
i2�nk=M : (5.13)

In equation (5.12) we say that Mc0; : : : ;McM�1 is the Discrete Fourier Transform (DFT) of

r0; : : : ; rM�1. Likewise, in equation (5.13) we say that r0; : : : ; rM�1 is the Inverse Discrete Fourier

Transform of Mc0; : : : ;McM�1. In general, the DFT of a sequence x0; : : : ; xN �1 is written

Xn D
N �1
X

mD0

xme
�i2�mn=N n D 0; : : : ; N � 1 (5.14)

and the Inverse DFT is written

xm D 1

N

N �1
X

nD0

Xne
i2�mn=N m D 0; : : : ; N � 1: (5.15)
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Equations (5.14) and (5.15) can be written in the matrix form

X D Ex

x D EX=N

where E is the matrix with components

Emn D e�i2�mn=N m;n D 0; : : : ; N � 1;

X is a column vector with componentsXn, and x is a column vector with components xn. Clearly

E=N is the inverse of E. Since the complex exponentials e˙i2�mn=N are periodic with period N ,

the DFT has a natural periodic extension of period N , i.e., XnCkN D Xn. In this way we see that

XN �k corresponds to X�k .

We have looked at interpolation in terms of sums of complex exponentials. In practice, the function

to be interpolated is often an even function which leads to an interpolation function involving only

cosines. In particular, we will see later on that interpolation by Chebyshev polynomials is based

on cosine series interpolation. We can define odd functions in the discrete case as those sequences

in which x�k D xN �k D xk . Suppose we are given samples x0; : : : ; xN of a function x. We can

extend this sequence to an even sequence of length 2N as follows

x2N �k D xk for k D 1; : : : ; N � 1: (5.16)

The DFT of this extended sequence is given by

Xn D
2N �1
X

mD0

xme
�i2�mn=2N D

2N �1
X

mD0

xme
�i�mn=N n D 0; : : : ; 2N � 1: (5.17)

Using the relation in equation (5.16), it follows that
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Xn D
N
X

mD0

xme
�i�mn=N C

2N �1
X

mDN C1

xme
�i�mn=N

D
N
X

mD0

xme
�i�mn=N C

1
X

mDN �1

x2N �me
�i�.2N �m/n=N

D
N
X

mD0

xme
�i�mn=N C

N �1
X

mD1

xme
Ci�mn=N

D
�

x0 C .�1/nxN

�

C 2

N �1
X

mD1

xm cos.�mn=N/: (5.18)

We define the Discrete Cosine Transform (DCT) OX0; : : : ; OXN �1 by

OXn D 1
2
Œx0 C .�1/nxN �C

N �1
X

mD1

xm cos.�mn=N/ n D 0; : : : ; 2N � 1: (5.19)

Clearly, OXn D Xn=2. It follows from equation (5.18) that the sequence Xn is also even, i.e.,

X2N �n D Xn. Taking the inverse DFT of the sequence Xn, we obtain

xm D 1

2N

2N �1
X

nD0

Xne
i�mn=N m D 0; : : : ; 2N � 1: (5.20)

Since Xn is an even sequence it follows that

xm D 1

2N

�

X0 C .�1/mXN

�

C 1

N

N �1
X

nD1

Xn cos.�mn=N/

D 2

N

n

1
2

� OX0 C .�1/m OXN

�

C
N �1
X

nD1

OXn cos.�mn=N/
o

m D 0; : : : ; 2N � 1: (5.21)

We take equation (5.21) as the definition of the Inverse Discrete Cosine Transform. Notice that the

inverse DCT has the same form as the DFT except for the for the factor 2=N .

Getting back to the interpolation problem, the above results suggest that we choose an interpolation

function of the form

x.�/ D
N
X

nD0

cn cos n�: (5.22)
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Since x.�/ must coincide with xm at � D �m D �m=N , we have

xm D
N
X

nD0

cn cos.�mn=N/ m D 0; : : : ; N: (5.23)

It follows from equations (5.19), (5.21) and (5.23) that

c0 D 1

N
OX0 D 1

N

�

1
2
.x0 C xN /C

N �1
X

mD1

xm

�

(5.24a)

cN D 1

N
OXN D 1

N

n

1
2

�

x0 C .�1/NxN

�

C
N �1
X

mD1

.�1/mxm

o

(5.24b)

cn D 2

N
OXn D 2

N

n

1
2

�

x0 C .�1/nxN

�

C
N �1
X

mD1

xm cos.�mn=N/
o

n D 1; : : : ; N � 1:

(5.24c)

Thus the coefficients in the interpolation formula (5.22) can be obtained using the Discrete Cosine

Transform. There are fast algorithms for computing the DFT that are called FFT (Fast Fourier

Transform) algorithms. Similarly, there are fast algorithms for computing the DCT that make use

of FFT algorithms.
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5.2 Properties of the DFT

In this section we will look at some of the properties of the Discrete Fourier Transform. Many of the

properties have analogs in the continuous case, but some of the properties are unique to the discrete

case. Since the complex exponentials e˙i2�mn=N in equations (5.14) and (5.15) are periodic with

periodN , the sequence x0; : : : ; xN �1 and its transformX0; : : : ; XN �1 can be extended in a natural

way to periodic sequences of period N . In the properties that follow, it will be assumed that the

sequences involved have been extended to periodic sequences of periodN . In the definitions of the

DFT and its inverse, the summations run from 0 toN �1. However, because of the periodicity, the

same result would be obtained if the index was allowed to range over any N consecutive integers.

Units The exponential terms that appear in the definitions of the DFT and its inverse are unitless.

Sometimes it is useful to introduce units into the discussion. A common case is to identifym and n

with time and frequency. Let the times t0; : : : ; tN �1 be defined by tm D m�t , m D 0; : : : ; N � 1,

where �t is a specified time increment. To keep the exponential terms dimensionless we define

frequencies f0; : : : ; fN �1 by fn D n�f , n D 0; : : : ; N � 1, where �f D 1=.N�t/. Then

e˙i2�mn=N D e˙i2�.m�t/n=.N�t/ D e˙i2�fntm :

The frequency increment is the reciprocal of the total time spanN�t . Similarly, the time increment

is the reciprocal of the total frequency span N�f . In other problems different units might be

appropriate. They can be introduced in the same way.

Real Sequences Suppose x0; : : : ; xN �1 is a real sequence. Then the DFTX of x has the property

X�n D XN �n D
N �1
X

mD0

xme
�i2�m.�n/=N D

N �1
X

mD0

xme
i2�mn=N D Xn: (5.25)

That is, the components of X for plus and minus n are complex conjugates of each other.

Even and Odd Sequences Suppose x is an even sequence, i.e., x�n D xn for all n. Then the

DFT of x has the property
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X�n D
N �1
X

mD0

xme
i2�mn=N

D
0
X

mD�.N �1/

xme
i2�mn=N

D
N �1
X

mD0

x�me
�i2�mn=N

D
N �1
X

mD0

xme
�i2�mn=N D Xn;

i.e., the DFT of an even sequence is also an even sequence. Applying the same type of argument

to odd sequences (x�n D �xn), it can be shown that the DFT of an odd sequence is also odd.

Combining these results with the previous result for real sequences, we see that the DFT of a real

and even sequence is real and even, and the DFT of a real and odd sequence is imaginary and odd.

Shift Theorem Suppose we have a sequence of values x0; : : : ; xN �1. Consider the sequence ym

defined by

ym D xm�k m D 0; : : : ; N � 1 (5.26)

for some fixed integer k. Taking the DFT of the ym sequence, we get

Yn D
N �1
X

mD0

yme
�i2�mn=N D

N �1
X

mD0

xm�ke
�i2�mn=N

D
N �1�k
X

mD�k

xme
�i2�.mCk/n=N D e�i2�kn=N

N �1
X

mD0

xme
�i2�mn=N D e�i2�kn=NXn: (5.27)

Thus, shifting the index m in the original xm sequence by k results in multiplying the transform

component Xn by the exponential factor e�i2�kn=N . This result is called the Shift Theorem.

Convolution Theorem If x0; : : : ; xN �1 and y0; : : : ; yN �1 are two sequences of length N , then

we define their convolution x ~ y by

.x ~ y/n D
N �1
X

mD0

xmyn�m: (5.28)
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Because of the periodicity of x and y, this convolution is sometimes called circular convolution or

cyclic convolution. Making a change of index in equation (5.28), we see that

.x ~ y/n D
N �1
X

mD0

xmyn�m D
n
X

kDn�N C1

xn�kyk D
N �1
X

kD0

xn�kyk D .y ~ x/n; (5.29)

i.e., x ~ y D y ~ x. Let us now look at the DFT of x ~ y. Let

zm D .x ~ y/m D
N �1
X

kD0

xkym�k: (5.30)

Then, the DFT of z is given by

Zn D
N �1
X

mD0

zme
�i2�mn=N

D
N �1
X

mD0

N �1
X

kD0

xkym�ke
�i2�mn=N

D
N �1
X

kD0

xk

N �1
X

mD0

ym�ke
�i2�mn=N

D
N �1
X

kD0

xke
�i2�kn=NYn (by the shift theorem)

D XnYn: (5.31)

Thus, the DFT of x ~ y has the components XnYn, n D 0; : : : ; N � 1. This result is called the

Convolution Theorem. We can use this theorem to construct an alternate method for evaluating

circular convolutions. We can take the DFT of the sequences x and y, multiply corresponding

components of X and Y , and then take the inverse DFT of the result. This method works fine

when dealing with periodic functions, but in practice this is seldom the case. Let x and y be

infinite sequences such that xn D 0 for n < 0 and n > N , and yn D 0 for n < 0 and N > M . We

define a non cyclic convolution x � y by

.x � y/n D
1
X

mD�1

xmyn�m:

Although we have allowed the index in the summation to go from �1 to 1, only a finite number

of the terms are nonzero. Moreover, .x � y/n is only nonzero for n D 0; : : : ;M CN . This type of
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convolution arises in a number of circumstances. In signal processing it arises in connection with

time-limited or approximately time-limited sequences. Many digital filters can be represented

by convolutions of this type in which one of the sequences represents a sampled signal and the

other represents the impulse response of the filter. Another interesting application concerns the

multiplication of two polynomials. Let p.x/ and q.x/ be the two polynomials

p.x/ D a0 C a1x C � � � C aMx
M

q.x/ D b0 C b1x C � � � C bNx
N (5.32)

and let r.x/ be their product. r.x/ can be written in the form

r.x/ D c0 C c1x C � � � C cMCNx
MCN : (5.33)

The coefficients cn of r.x/ are given by

cn D .a � b/n D
1
X

mD�1

ambn�m (5.34)

where we have defined an to be zero outside the range 0 � n � M and bn to be zero outside the

range 0 � n � N .

It turns out that we can evaluate noncyclic convolutions using cyclic convolutions if we add an

appropriate number of zeros to the sequences. Let x and y be infinite sequences defined as before.

Define sequences Ox and Oy of length N CM C 1 by

Oxn D
(

xn 0 � n � N

0 N C 1 � n � M CN
(5.35)

Oyn D
(

yn 0 � n � M

0 M C 1 � n � M CN:
(5.36)

(5.37)

Then

. Ox ~ Oy/n D
N CM
X

mD0

Oxm Oyn�m D
N
X

mD0

xm Oyn�m 0 � n � M CN: (5.38)

Suppose n �m < 0. Then by periodicity
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Oyn�m D OyN CMC1Cn�m:

Looking at the indexNCMC1Cn�m, we see thatNCMC1Cn�m � NCMC1C0�N D
M C 1 andN CM C 1Cn�m � N CM C 1C .�1/ D N CM . It follows from the definition

of Oy in equation (5.36) that Oyn�m D 0 for n �m < 0. It also follows from the definition of Oy that

Oyn�m D yn�m when 0 � n�m � M . The index n�m is always less thanM CN . If n�m > M ,

then it again follows from the definition of Oy that Oyn�m D 0. Thus, equation (5.38) can be written

. Ox ~ Oy/n D
N
X

mD0

xmyn�m D
1
X

mD�1

xmyn�m D .x � y/n: (5.39)

We have shown that the nonzero values of x � y can be obtained by cyclic convolution.

Discrete Delta Function The discrete analog of the delta function is defined by

ın D
(

1 n D 0

0 n ¤ 0:
(5.40)

Clearly, the discrete delta function ı has the property

.ı � x/n D
N �1
X

mD0

ımxn�m D xn; (5.41)

i.e., ı � x D x. The DFTD of ı is given by

Dn D
N �1
X

mD0

ıme
�i2�mn=N D 1 n D 0; : : : ; N � 1: (5.42)

Parseval’s Theorem Let x0; : : : ; xN �1 be a complex sequence and define a sequence Ox by

Oxm D x�m m D 0; : : : ; N � 1:

The DFT of Ox is given by
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OXn D
N �1
X

mD0

Oxme
i2�mn=N

D
N �1
X

mD0

Ox�me
�i2�mn=N m ! �m

D
N �1
X

mD0

xme
�i2�mn=N

D
N �1
X

mD0

xmei2�mn=N

D Xn n D 0; : : : ; N � 1:

It follows from the definition of the cyclic convolution that

.x ~ Ox/0 D
N �1
X

mD0

xm Ox�m D
N �1
X

mD0

xmxm D
N �1
X

mD0

jxmj2: (5.43)

By the convolution theorem and the definition of the inverse DFT, we have

.x ~ Ox/m D 1

N

N �1
X

nD0

XnXne
i2�mn=N :

Therefore,

.x ~ Ox/0 D 1

N

N �1
X

nD0

XnXn D 1

N

N �1
X

nD0

jXnj2: (5.44)

Combining equations (5.43) and (5.44), we get

N �1
X

mD0

jxmj2 D 1

N

N �1
X

nD0

jXnj2:

This result is known as Parseval’s Theorem or sometimes as Rayleigh’s Energy Theorem.

Downsampling and Aliasing Suppose we have a sequence x0; : : : ; xN �1 where N D ML.

Downsampling by L produces a sequence y0; : : : ; yM�1 where ym D xmL, i.e., y consists of
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every L-th sample of x. It follows from the sum formula for a geometric series in equation (5.9)

that

L�1
X

lD0

e�i2�ln=L D 1 � e�i2�n

1 � e�i2�n=L
D
(

L n D 0. mod L/

0 n ¤ 0. mod L/:

Thus, the DFT of the downsampled sequence y0; : : : ; yM�1 is given by

Yk D
M�1
X

mD0

yme
�i2�km=M

D
M�1
X

mD0

xmLe
�i2�km=M

D 1

L

N �1
X

nD0

xne
�i2�kn=N

L�1
X

lD0

e�i2�ln=L

D 1

L

N �1
X

nD0

xne
�i2�kn=N

L�1
X

lD0

e�i2�lMn=N

D 1

L

L�1
X

lD0

N �1
X

nD0

xne
�i2�.kClM/n=N

D 1

L

L�1
X

lD0

XkClM k D 0; : : : ;M � 1: (5.45)

The sequence Y0; : : : ; YM�1 is called an aliased version of X . Thus, downsampling the original

sequence results in aliasing of its discrete transform.

Stretching and Repeating Let N D ML. The sequence x0; : : : ; xM�1 is said to be stretched by

L to the sequence y0; : : : ; yN �1 if

ym D
(

xm=L m=L an integer

0 m=L not an integer:
(5.46)

Thus stretching by L places L � 1 zeroes between each sample of x. The DFT of the sequence y

is given by
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Yn D
N �1
X

mD0

yme
�i2�mn=N

D
M�1
X

kD0

xke
�i2�.kL/n=N

D
M�1
X

kD0

xke
�i2�kn=M n D 0; : : : ; N � 1 (5.47)

If X is the DFT of x, then Y consists of the sequence X0; : : : ; XM�1 repeated L times.

Zero-Padding and Interpolation Let x0; : : : ; xN �1 be a real sequence. Then the transform

sequence X0; : : : ; XN �1 has the property X�k D XN �k D Xk . In particular, for N even, N=2

is real. Because of the periodicity of X , we can allow the index to range over any N consecutive

integers. For zero-padding it is convenient to center the transform with the n D 0 value in the

center. ForN odd this is easy to do. For example, in place of the sequence X0; X1; X2; X3; X4, we

could consider the sequence X�2; X�1; X0; X1; X2 or equivalently X3; X4; X0; X1; X2. Thus, for

N odd, we could write

xm D 1

N

N �1
X

nD0

Xne
i2�mn=N D 1

N

.N �1/=2
X

nD�.N �1/=2

Xne
i2�mn=N : (5.48)

Consider the real-valued function

x.�/ D 1

N

.N �1/=2
X

nD�.N �1/=2

Xne
in� : (5.49)

This function has the property that x.�m/ D xm for �m D 2�m=N . That is the sequence x

represent sampled values of the function x.�/ at the equally space points �m. If we had not cen-

tered the X values prior to replacing 2�m=N by � , the resulting x function would still coincide

with xm at �m, but it would not be real-value for all � . Suppose we now expand the sequence

X�.N �1/=2; : : : ; X.N �1/=2 to M terms (M > N ) by adding zeroes to the two ends. We refer to this

expanded sequence as a zero-padded sequence. It does not matter how many of the zero values we

place at each end, for when we use periodicity to change the indices back to the range 0; : : : ;M�1,

the zeroes will all be consecutive. Let us denote by Oxm,m D 0; : : : ;M � 1, the values obtained by

taking the inverse DFT of the zero-padded sequence. Then

Oxm D 1

M

.N �1/=2
X

nD�.N �1/=2

Xne
i2�mn=M m D 0; : : : ;M � 1: (5.50)
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It follows from equation (5.50) that Oxm D .N=M/x. O�m/where O�m D 2�m=M form D 0; : : : ;M�
1. Thus, apart from the factor N=M , the sequence Ox also represents sampled values of the func-

tion x.�/, but on a finer grid of points. If M is an integer multiple of N , say M D LN , then
O�mL D �m for all m and we have effectively interpolated between the values of the original se-

quence. To take the inverse DFT we need to convert the index range to 0; : : : ;M � 1. To do this

we can first set all the components of the zero-padded sequence OX0; : : : ; OXM�1 to zero. Next we

set OXm D .M=N/Xm for m D 0; : : : ; .N � 1/=2. Finally, we set OXM�m D .M=N/XN �m for

m D 1; : : : ; .N � 1/=2. The inverse DFT of this sequence will give sampled values of x.�/.

The case for even N requires a little more care since we can’t directly center values around n D 0

with the same number on each side. One approach is to neglect the N=2 term and work with

xm
:D 1

N

N=2�1
X

nD�.N=2�1/

Xne
�i2�mn=N m D 0; : : : ; N � 1: (5.51)

You can then proceed as in the odd case. Another way of handling the even n case is to split the

N=2 value between the indices ˙N=2, i.e., we work with

xm D 1

N

N=2
X

nD�N=2

Yne
�i2�mn=N m D 0; : : : ; N � 1 (5.52)

where Yn D Xn for n ¤ ˙N=2 and YN=2 D Y�N=2 D 1
2
XN=2. This gives the correct value for xm

since XN=2 is real and

e�i2�.N=2/n=N D ei2�.N=2/n=N :

In this case we zero pad as follows:

1. Set OXm D 0 for m D 0; : : : ;M � 1

2. Set OXm D .M=N/Xm for m D 0; : : : ; N=2 � 1

3. Set OXM�m D .M=N/XN �m form D 1; : : : ; N=2 � 1

4. Set OXN=2 D OXM�N=2 D 1
2
.M=N/XN=2.

The inverse DFT of this sequence gives sampled values of the real-valued function

x.�/ D 1

N

N=2
X

nD�N=2

Yne
�in� : (5.53)
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There are many more properties of the DFT that could have been included, but the ones given here

are some of the more important ones. One of the nice things about Discrete Fourier Transforms is

that the derivation of its properties does not generally involve complicated mathematics.
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5.3 Relation between the Discrete Fourier Transform and Fourier Series

Suppose x.t/ is periodic with period T . Then x has a Fourier series expansion

x.t/ D
1
X

nD�1

c.n/ei2�nt=T (5.54)

with

c.n/ D 1

T

Z T

0

x.t/e�i2�nt=T dt: (5.55)

Let us sample x at N equally spaced points in Œ0; T /. If �t D T=N , then

x.m�t/ D
1
X

nD�1

c.n/ei2�mn=N

D
1
X

kD�1

.kC1/N �1
X

nDkN

c.n/ei2�mn=N

D
1
X

kD�1

N �1
X

nD0

c.nC kN/ei2�m.nCkN /=N

D
N �1
X

nD0

1
X

kD�1

c.nC kN/ei2�mn=N

D
N �1
X

nD0

cp.n/e
i2�mn=N m D 0; 1; : : : ; N � 1 (5.56)

where

cp.n/ D
1
X

kD�1

c.nC kN/: (5.57)

Here we have used the fact that ei2�mn=N is periodic with periodN . It follows from equation (5.56)

that fx.m�t/g and fNcp.n/g are a discrete Fourier transform pair. Moreover,

cp.N � n/ D
1
X

kD�1

c.�nC kN/: (5.58)
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Taking the inverse DFT of equation (5.56), we obtain

cp.n/ D 1

N

N �1
X

mD0

x.m�t/e�i2�mn=N n D 0; 1; : : : ; N � 1: (5.59)

Suppose N is chosen so that c.n/
:D 0 for jnj � N=2. Then it follows from equations (5.57) and

(5.58) that

cp.n/
:D c.n/

and

cp.N � n/ :D c.�n/ for n D 0; 1; : : : ; N=2:

Aliasing occurs if terms with k ¤ 0 contribute significantly to the sums in equations (5.57) and

(5.58). To prevent aliasing it is necessary for c.n/ to be very small when jnj � N=2. Notice that

the values of c.n/ for negative n occur in the last half of cp.n/ in reverse order.
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5.4 Approximation of the Fourier Transform by the Discrete Fourier Trans-

form

Let x.t/ and X.f / form a Fourier transform pair, i.e.,

x.t/ D
Z 1

�1

X.f /ei2�f t df (5.60)

and

X.f / D
Z 1

�1

x.t/e�i2�f t dt: (5.61)

If we sample x.t/ at intervals of �t , then

x.m�t/ D
Z 1

�1

X.f /ei2�f m�t df (5.62)

D
Z 1

�1

X.f /ei2�mf=F df (5.63)

D
1
X

kD�1

Z .kC1/F

kF

X.f /ei2�mf=F df (5.64)

where F D 1=�t . By change of variable in the above integrals

Z .kC1/F

kF

X.f /ei2�mf=F df D
Z F

0

X.f C kF /ei2�mf=F df: (5.65)

Thus, it follows from equations (5.64)–(5.65) that

x.m�t/ D
Z F

0

Xp.f /e
i2�mf=F df (5.66)

where

Xp.f / D
1
X

kD�1

X.f C kF /: (5.67)

Since Xp.f / is periodic with period F , it can be expanded in a Fourier series, i.e.,
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Xp.f / D
1
X

lD�1

ale
�i2�lf=F : (5.68)

The coefficients al are given by

al D 1

F

Z F

0

Xp.f /e
i2�lf=F df: (5.69)

It follows from equations (5.66) and (5.69) that

al D 1

F
x.l�t/ (5.70)

and hence

Xp.f / D 1

F

1
X

lD�1

x.l�t/e�i2�lf=F : (5.71)

Let T D N�t and �f D 1=T D F=N . Then it follows from equation (5.71) that

Xp.n�f / D 1

F

1
X

lD�1

x.l�t/e�i2�ln=N

D 1

F

1
X

kD�1

.kC1/N �1
X

mDkN

x.m�t/e�i2�mn=N : (5.72)

Since

.kC1/N �1
X

mDkN

x.m�t/e�i2�mn=N D
N �1
X

mD0

x.m�t C kN�t/e�i2�mn=N ; (5.73)

it follows from equation (5.72) that

Xp.n�f / D 1

F

N �1
X

mD0

xp.m�t/e
�i2�mn=N (5.74)

where
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xp.m�t/ D
1
X

kD�1

x.m�t C kN�t/: (5.75)

Taking the discrete inverse Fourier transform of equation (5.74), we get

xp.m�t/ D F

N

N �1
X

nD0

Xp.n�f /e
i2�mn=N (5.76)

or

xp.m�t/ D 1

T

N �1
X

nD0

Xp.n�f /e
i2�mn=N : (5.77)

Thus, fxp.m�t/g and fFXp.n�f /g are a discrete Fourier transform pair.

Suppose X.f / is negligible for jf j � F=2. Then it follows from equation (5.67) that

Xp.f /
:D X.f / for 0 � f � F=2 (5.78)

and

Xp.F � f / :D X.�f / for 0 � f � F=2: (5.79)

Thus

Xp.n�f /
:D X.n�f / for 0 � n � N=2 (5.80)

and

Xp

�

.N � n/�f
� :D X.�n�f / for 0 � n � N=2: (5.81)

Similarly, if x.t/ is negligible for jt j � T=2, then

xp.m�t/
:D x.m�t/ for 0 � m � N=2 (5.82)

and

xp

�

.N �m/�t
� :D x.�m�t/ for 0 � m � N=2: (5.83)
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Aliasing occurs when terms with k ¤ 0 contribute significantly to the sum on the right-hand-side

of equation (5.67) or (5.75). In order to prevent aliasing it is necessary for X.f / to be negligible

when jf j � F=2. Similarly, it is necessary for x.t/ to be negligible when jt j � T=2. Notice

that the values for negative frequencies occur in reverse order in the last half of the sequence

fXp.n�f /gN �1
nD0 . Similarly, the values for negative times occur in reverse order in the last half

of the sequence fxp.m�t/gN �1
mD0. If the function x.t/ is real-valued, then the negative frequency

values are the complex conjugate of the corresponding positive frequency values. Notice also that

the frequency values Xp.n�f / must be multiplied by F (F D 1=�t) prior to performing the

inverse discrete Fourier transform to get the time values xp.m�t/. We can get interpolated values

in the time domain by padding the frequency sequence with a sequence of zeroes. These zeroes go

in the middle—between the positive and negative frequency values—since this is where the large

positive and negative frequency values reside.
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5.5 Relation Between the DFT and Finite Order Rotational Symmetry

We say that a geometric body has N -th order rotational symmetry about some axis if a rotation of

the body through an angle of 2�=N looks the same as the original. For example, an octagon has

8-th order rotational symmetry. A body with N -th order rotational symmetry can be subdivided

intoN identical sub blocks of angular width 2�=N . Suppose that we have a finite number of nodal

points within the body that are arranged symmetrically in the N sub blocks. We will number these

nodal points in the same order within each block. Suppose we wish to determine the value of some

physical quantity at each nodal point. If x is a vector of the nodal point values, then it can be

partitioned as follows

x D

0

B

B

B

B

B

B

@

x0

x1

:::

xN �1

1

C

C

C

C

C

C

A

(5.84)

where xn contains the values in the n-th sub block. Suppose also that x is the solution of a linear

set of equations

Ax D b: (5.85)

We can think of b as some kind of forcing function and x as the resultant. Systems of linear

equations like this occur quite often in the solution of physical problems.

We can define a discrete rotation matrix operator R by

R

0

B

B

B

B

B

B

@

x0

x1

:::

xN �1

1

C

C

C

C

C

C

A

D

0

B

B

B

B

B

B

@

x1

:::

xN �1

x0

1

C

C

C

C

C

C

A

: (5.86)

It is easily seen that the matrixR is given by
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R D

�
0 I 0 : : : 0

0 0 I : : : 0
:::

:::
:::
: : :

:::

0 0 0 : : : I

I 0 0 : : : 0

˘
: (5.87)

where I is an identity matrix whose row and column dimension is the number of nodal points

within a symmetry block. The matrix R has the property RN D I where I here is an identity

matrix with row and column dimension equal to the total number of nodes. Suppose e is an

eigenvector of R with eigenvalue �, i.e., Re D �e. Then

RN e D �N e D e (5.88)

and hence �N D 1, i.e., the eigenvalues of R are the N -th roots of unity. The eigenvalues �n of R

can be written as follows

�n D ei2�n=N n D 0; 1; : : : ; N � 1: (5.89)

Let E be a matrix whose columns are independent eigenvectors of R. One choice for E is the

N �N block matrix in which the blockEmn in them-th block row and n-th block column is given

by

Emn D ei2�mn=N I m; n D 0; 1; : : : ; N � 1: (5.90)

The inverse of the matrixE is E=N , where the bar over E indicates complex conjugate.

If the body and any relevant physical properties have N -th order rotational symmetry, then a rota-

tion of the force vector b will cause a corresponding rotation of the resultant x, i.e.,

ARx D Rb: (5.91)

Combining equations (5.85) and (5.91), we get

ARx D RAx: (5.92)

Since equation (5.92) holds for arbitrary b and hence for arbitrary x, we must have
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AR D RA: (5.93)

Thus the matrixA describing the physical problem must commute with the rotation matrixR. This

commutation relation implies that A has the block circulant form

A D

�
A0 A1 � � � AN �1

AN �1 A0 � � � AN �2

:::
:::

A1 � � � AN �1 A0

�
: (5.94)

This can be easily seen by multiplying out the blocks of AR and RA.

If e is an eigenvector of R with eigenvalue �, then it follows that

ARe D RAe D �Ae: (5.95)

Thus, Ae is also an eigenvector of R corresponding to the eigenvalue �, i.e., the eigenspaces of R

are invariant under A. This invariance of the eigenspaces of R under A implies that

AE D ED (5.96)

where D is a block diagonal matrix. The columns of E are independent and thus can be used as a

basis. The expansion of x in terms of this basis can be written as follows

x D 1

N
EX (5.97)

where 1
N
X is the vector of expansion coefficients. We can write equation (5.97) in terms of block

components as follows

xm D 1

N

N �1
X

nD0

Xne
i2�mn=N m D 0; 1; : : : ; N � 1: (5.98)

In other words, the vectors xm can be obtained from the vectorsXn by means of the inverse Discrete

Fourier Transform. Substituting equation (5.97) into equation (5.85) and making use of equation

(5.96), we obtain

Ax D 1

N
AEX D 1

N
EDX D b: (5.99)
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This equation can be reduced to

DX D NE�1b D Eb: (5.100)

Since D is block diagonal, we have reduced the large system of equations Ax D b to the solution

of N smaller sets of equations. Since solution time goes as the cube of the equation size, this

reduction results in a large time saving. Notice that the n-th sub block of Eb is given by

.Eb/n D
N �1
X

mD0

e�i2�mn=Nbm: (5.101)

Here again we have a Discrete Fourier Transform relation. The block diagonal matrix D is related

to A by D D E�1AE. It can be shown that the m-th diagonal block Dm is given by

Dm D
N �1
X

nD0

ei2�mn=NAn: (5.102)

Thus, we have seen that the Discrete Fourier Transform arises naturally when considering problems

having finite order rotational symmetry.
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5.6 Interpolation Using Chebyshev Polynomials

In a previous section we looked at trigonometric interpolation. The problem with this form of inter-

polation is that it frequently takes a large number of terms to approximate the function accurately.

This is due to the fact that the periodic extension of the function is usually not very smooth. In

this section we will introduce a superior form of interpolation in terms of Chebyshev polynomials.

Suppose that f is an infinitely smooth function defined on the interval Œ�1; 1�. If we make the

change of variable x D cos � , then the function � defined by

�.�/ D f .cos �/

is an infinitely smooth even periodic function on the whole real line. Therefore, from our results

on trigonometric interpolation, we see that � can be approximated by the interpolation function N�
given by

N�.�/ D
N
X

nD0

an cos.n�/ (5.103)

where the coefficients an are given by

a0 D 1

N

�

1
2
.�0 C �N /C

N �1
X

mD1

�m

�

(5.104a)

aN D 1

N

n

1
2

�

�0 C .�1/N�N

�

C
N �1
X

mD1

.�1/m�m

o

(5.104b)

an D 2

N

n

1
2

�

�0 C .�1/n�N

�

C
N �1
X

mD1

�m cos.�mn=N/
o

n D 1; : : : ; N � 1: (5.104c)

Here �k is the value of � at the point �k D k�=N . Let us now interpret this interpolation result in

terms of the original variable x. It follows that f can be interpolated by the function Nf defined by

Nf .x/ D
N
X

nD0

anTn.x/ (5.105)
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where the coefficients an are given by

a0 D 1

N

�

1
2
.f0 C fN /C

N �1
X

mD1

fm

�

(5.106a)

aN D 1

N

n

1
2

�

f0 C .�1/NfN

�

C
N �1
X

mD1

.�1/mfm

o

(5.106b)

an D 2

N

n

1
2

�

f0 C .�1/nfN

�

C
N �1
X

mD1

fmTm

�

cos.�n=N/
�

o

n D 1; : : : ; N � 1: (5.106c)

Here fk is the value of f at the point xk D cos.k�=N/. Notice that the interpolation points xk are

not uniformly spaced in the interval Œ�1; 1�. They are more dense near the endpoints of the interval.

This nonuniform distribution of the interpolation points has the beneficial effect of increasing the

convergence rate of the interpolation and providing a more uniform error distribution.
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6 The Fast Fourier Transform (FFT)

A straight forward calculation of the discrete Fourier transform would take N 2 multiplications

and additions. We will show that there are fast algorithms that can compute the discrete Fourier

transform in N log2N operations. These algorithms are called FFT (Fast Fourier Transform)

algorithms. The difference between N 2 and N log2N can be very significant for large N . For

example, the savings for N D 2048 is a factor of 186. There are a number of different FFT

algorithms. The one that will be described here is the one introduced by Danielson and Lanczos

[4]. The FFT has made the widespread use of Fourier analysis possible.

6.1 Danielson-Lanczos Algorithm

This algorithm breaks the DFT into two smaller DFT’s of half the size as shown below

Xn D
N �1
X

mD0

xm e
i2�mn=N D

N=2�1
X

mD0

x2m e
i2�.2m/n=N C

N=2�1
X

mD0

x2mC1 e
i2�.2mC1/n=N

D
N=2�1
X

mD0

x2m e
i2�mn=.N=2/ C ei2�n=N

N=2�1
X

mD0

x2mC1 e
i2�mn=.N=2/ D X e

n C ei2�n=NXo
n: (6.1)

In this equationX e
n andXo

n are theN=2 point transforms of the even and odd samples respectively.

The index n in equation (6.1) runs from 0 to N � 1, but the N=2 point transforms X e
n and Xo

n are

periodic with periodN=2. This equation can be written as the pair of equations

Xn D X e
n C ei2�n=NXo

n n D 0; 1; : : : ; N=2 � 1 (6.2)

XnCN=2 D X e
n � ei2�n=NXo

n n D 0; 1; : : : ; N=2 � 1: (6.3)

If N is a power of 2, then X e
n and Xo

n can be as expressed in terms of N=4 point transforms of

their even and odd samples and this process can be repeated recursively until we arrive at one

point transforms. The one point transform is just the identity operator. Thus, we wind up with

the original samples in a different order. This order is called bit reversed order since it amounts to

replacing the original indices in binary form by the indices formed by reversing the order of the

bits. The recursive process is illustrated in figure 6.1.

Here we show the indices of the elements chosen at each stage along with their binary representa-

tion. The bit reversal occurs because choosing even and odd samples at the k-th step depends on

whether the k-th bit from the right is a 1 or a 0. At each stage of this process there areN operations

and there are log2N stages.
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8  4  2  1 

0 000  0 000  0 000  0 000 

1 001  2 010  4 100  4 100 

2 010  4 100  2 010  2 010 

3 011  6 110  6 110  6 110 

4 100  1 001  1 001  1 001 

5 101  3 011  5 101  5 101 

6 110  5 101  3 011  3 011 

7 111  7 111  7 111  7 111 

 

Figure 6.1: Illustration of the bit reversal process forN D 8.

6.2 FFT of a Single Real Sequence

Let x0; x1; : : : ; xN �1 be a sequence of real numbers. The DFT of this sequence could be obtained

by defining a complex sequence with the values xn in the real part and zero in the imaginary part

and then applying the ordinary FFT to this complex sequence. However, in this section we will

develop a more economical process.

Notice that the transformed sequence X0; X2; : : : ; XN �1 has the property that the N � k element

is the conjugate of the k element. Define a new sequence of length N=2 by

hm D x2m C i x2mC1 m D 0; 1; : : : ; N=2 � 1: (6.4)

Let fHng denote the DFT of fhmg. By linearity,

Hn D X e
n C i Xo

n n D 0; 1; : : : ; N=2 � 1 (6.5)

where X e
n and Xo

n are the DFT’s of fx2mg and fx2mC1g. Since X e
0 and Xo

0 are real, they can be

obtained by taking the real and imaginary parts of H0. Moreover,

HN=2�n D X e
N=2�n C i Xo

N=2�n D X e
n C i Xo

n

or

HN=2�n D X e
n � i X0

n n D 1; : : : ; N=2 � 1: (6.6)
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It follows from equations (6.5) and (6.6) that

X e
n D 1

2
.Hn CHN=2�n/ (6.7)

Xo
n D 1

2i
.Hn �HN=2�n/ n D 1; : : : ; N=2 � 1: (6.8)

It follows from equations (6.2) and (6.3) that

Xn D X e
n C ei2�n=NXo

n n D 0; 1; : : : ; N=2 � 1: (6.9)

and

XN=2Cn D X e
n � ei2�n=NXo

n n D 0; 1; : : : ; N=2 � 1: (6.10)

The procedure can be summarized as follows:

1. Form the sequence h0; : : : ; hN=2�1 as in equation (6.4).

2. Take the FFT of fhmg to get fHng.

3. Compute X e
n and Xo

n for n D 0; : : : ; N=2 � 1 using equations (6.7)and (6.8).

4. Compute Xn for n D 0; : : : ; N � 1 using equations (6.9) and (6.10).

6.3 Fast Discrete Sine Transform of Real Data

We have seen that Fourier sine series converge faster than the ordinary Fourier series when the

function vanishes at the two endpoints, having a convergence rate of at least 1=n3. In this section

we will show how to compute the discrete sine transform.

A real sequence x0; x1; : : : ; xN �1 with x0 D 0 can be extended to twice its length as an odd

function as follows

xN D 0 and x2N �m D �xm m D 1; 2; : : : ; N � 1: (6.11)

The discrete Fourier transform of this odd sequence is given by
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Xn D
2N �1
X

mD0

xme
��mn=N

D
N �1
X

mD0

xme
�i�mn=N C

2N �1
X

mDN C1

xme
�i�mn=N

D
N �1
X

mD0

xme
�i�mn=N �

N �1
X

mD1

xme
i�mn=N

D �2i
N �1
X

mD0

xm sin.�mn=N/ n D 0; 1; : : : ; 2N � 1: (6.12)

Notice that XN D 0. We define the discrete sine transform by

OXn D
N �1
X

mD0

xm sin.�mn=N/ n D 0; 1; : : : ; N � 1: (6.13)

Notice that the values OXn of the discrete sine transform are real for all n. It follows from equation

(6.12) that

X2N �n D 2i

N �1
X

mD0

xm sin.�mn=N/ n D 1; 2; : : : ; N: (6.14)

Thus,

Xn D �2i OXn n D 0; 1; : : : ; N � 1 (6.15a)

X2N �n D C2i OXn n D 1; 2; : : : ; N: (6.15b)

Using the relations in equations (6.15a) and (6.15b), the inverse transform of Xn becomes
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xm D 1

2N

2N �1
X

nD0

Xne
i�mn=N

D �i
N

N �1
X

nD0

OXne
i�mn=N C 1

2N

2N �1
X

nDN C1

Xne
i�mn=N

D �i
N

N �1
X

nD0

OXne
i�mn=N C 1

2N

N �1
X

nD1

X2N �ne
�i�mn=N

D �i
N

N �1
X

nD0

OXne
i�mn=N C i

N

N �1
X

nD1

OXne
�i�mn=N

D 2

N

N �1
X

nD0

OXn sin.�mn=N/ m D 0; 1; : : : ; 2N � 1: (6.16)

Therefore, the inverse discrete sine transform can be defined by

xm D 2

N

N �1
X

nD0

OXn sin.�mn=N/ m D 0; 1; : : : ; N � 1: (6.17)

Except for the factor 2=N , the discrete sine transform and its inverse have the same form. There-

fore, the same algorithm can be used for both. Now let us examine an economical way to calculate

the discrete sine transform.

Define a new sequence y0; : : : ; yN �1 by

y0 D 0 and ym D .xm CxN �m/ sin.m�=N/C 1
2
.xm �xN �m/ m D 1; : : : ; N �1 (6.18)

and letRm and Im be the real and imaginary parts of the discrete Fourier transform of fymg. Since

N �1
X

mD1

xN �m sin.m�=N/ cos.2�mn=N/ D
N �1
X

mD1

xm sin.� �m�=N/ cos.cos.2�n � 2�mn=N/

D
N �1
X

mD1

xm sin.m�=N/ cos.2�mn=N/ (6.19)
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and

N �1
X

mD1

xN �m cos.2�mn=N/ D
N �1
X

mD1

xm cos.2�n � 2�mn=N/

D
N �1
X

mD1

xm cos.2�mn=N/; (6.20)

it follows that

Rn D
N �1
X

mD0

ym cos.2�mn=N/

D
N �1
X

mD1

.xm C xN �m/ sin.m�=N/ cos.2�mn=N/C 1
2

N �1
X

mD1

.xm � xN �m/ cos.2�mn=N/

D 2

N �1
X

mD1

xm sin.m�=N/ cos.2�mn=N/C 0

D
N �1
X

mD1

xm

�

sin
.2nC 1/m�

N
� sin

.2n � 1/m�
N

�

D OX2nC1 � OX2n�1: (6.21)

Since

N �1
X

mD1

xN �m sin.m�=N/ sin.2�mn=N/ D
N �1
X

mD1

xm sin.� �m�=N/ sin.2�n� 2�mn=N/

D �
N �1
X

mD1

xm sin.m�=N/ sin.2�mn=N/ (6.22)

and

N �1
X

mD1

xN �m sin.2�mn=N/ D
N �1
X

mD1

xm sin.2�n� 2�mn=N/

D �
N �1
X

mD1

xm sin.2�mn=N/; (6.23)

it follows that
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In D �
N �1
X

mD0

ym sin.2�mn=N/

D �
N �1
X

mD1

.xm C xN �m/ sin.m�=N/ sin.2�mn=N/� 1
2

N �1
X

mD1

.xm � xN �m/ sin.2�mn=N/

D 0 �
N �1
X

mD1

xm sin.2�mn=N/

D � OX2n: (6.24)

Moreover,

R0 D 2

N �1
X

mD1

xm sin.m�=N/ D 2 OX1: (6.25)

Thus, the even terms of f OXng can be computed using equation (6.24) and the odd terms can be

computed recursively using equation (6.21) starting from OX1 D R0=2. The procedure can be

summarized as follows:

1. Form the sequence y0; y1; : : : ; yN �1 as in equation (6.18).

2. Take the FFT of the real sequence fyng to obtain fRm C iImg.

3. Compute the even terms of OXn using OX2n D �In.

4. Compute the odd terms of OXn using the recursion relation OX2nC1 D Rn C OX2n�1 starting

with OX1 D R0=2.

6.4 Fast Discrete Cosine Transform of Real Data

The Fourier cosine series will often converge faster than the ordinary Fourier series, having a

convergence rate of at least 1=n2. A two-dimensional Discrete Cosine Transform of sub blocks of

pixels was used in the original JPEG image compression scheme. In this section we will show how

to compute the Discrete Cosine Transform.

A real sequence x0; x1; : : : ; xN can be extended evenly to a sequence of 2N terms using

x2N �m D xm m D 1; 2; : : : ; N � 1: (6.26)

The discrete Fourier transform of this even sequence can be written
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Xn D
2N �1
X

mD0

xme
�i�mn=N

D
�

x0 C .�1/nxN

�

C
N �1
X

mD1

xme
�i�mn=N C

2N �1
X

mDN C1

xme
�i�mn=N

D
�

x0 C .�1/nxN

�

C
N �1
X

mD1

xme
�i�mn=N C

N �1
X

mD1

x2N �me
i�mn=N

D
�

x0 C .�1/nxN

�

C 2

N �1
X

mD1

xm cos.�mn=N/ n D 0; 1; : : : ; 2N � 1: (6.27)

We define the discrete cosine transform by

OXn D 1
2
Xn D 1

2

�

x0 C .�1/nxN

�

C
N �1
X

mD1

xm cos.�mn=N/ n D 0; 1; : : : ; N: (6.28)

It follows from equation(6.27) that

X2N �n D
�

x0 C .�1/nxN

�

C 2

N �1
X

mD1

xm cos.�mn=N/ n D 1; 2; : : : ; N � 1: (6.29)

Thus,

Xn D 2 OXn n D 0; 1; : : : ; N (6.30a)

X2N �n D 2 OXn n D 1; 2; : : : ; N � 1: (6.30b)

Using the relations in equations (6.30a) and (6.30b), the inverse transform of Xn becomes
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xm D 1

2N

2N �1
X

nD0

Xne
i�mn=N

D 1

N

N
X

nD0

OXne
i�mn=N C 1

2N

2N �1
X

nDN C1

Xne
i�mn=N

D 1

N

� OX0 C .�1/m OXN

�

C 1

N

N �1
X

nD1

OXne
i�mn=N C 1

2N

N �1
X

nD1

X2N �ne
�i�mn=N

D 1

N

� OX0 C .�1/m OXN

�

C 1

N

N �1
X

nD1

OXne
i�mn=N C 1

N

N �1
X

nD1

OXne
�i�mn=N

D 1

N

�

� OX0 C .�1/m OXN

�

C 2

N �1
X

nD1

OXn cos.�mn=N/

�

D 2

N

�

1
2

� OX0 C .�1/m OXN

�

C
N �1
X

nD1

OXn cos.�mn=N/

�

m D 0; 1; : : : ; 2N � 1: (6.31)

Therefore, we can define the inverse discrete cosine transform by

xm D 2

N

�

1
2

� OX0 C .�1/m OXN

�

C
N �1
X

nD1

OXn cos.�mn=N/

�

m D 0; 1; : : : ; N: (6.32)

Again the inverse discrete cosine transform has the same form as the discrete cosine transform

except for a factor of 2=N . Thus the same algorithm can be used for both the transform and its

inverse.

Like the sine transform, the cosine transform can be computed from the discrete Fourier transform

of an auxiliary sequence fymg defined by

ym D 1
2
.xm C xN �m/ � .xm � xN �m/ sin.m�=N/ m D 0; 1; : : : ; N � 1: (6.33)

Let Rn and In be the real and imaginary parts of the discrete Fourier transform of the sequence

fymg. It follows from equations (6.19) and (6.20) that
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Rn D
N �1
X

mD0

ym cos 2�mn=N

D 1
2

N �1
X

mD0

.xm C xN �m/ cos.2�mn=N/�
N �1
X

mD0

.xm � xN �m/ sin.m�=N/ cos.2�mn=N/

D 1
2
.x0 C xN /C

N �1
X

mD1

cos.2�mn=N/ � 0 D OX2n n D 0; 1; : : : ; N=2: (6.34)

It follows from equations (6.22) and (6.23) that

In D �
N �1
X

mD0

ym sin 2�mn=N

D �1
2

N �1
X

mD0

.xm C xN �m/ sin.2�mn=N/C
N �1
X

mD0

.xm � xN �m/ sin.m�=N/ sin.2�mn=N/

D �0C 2

N �1
X

mD1

sin.m�=N/ sin.2�mn=N/

D
N �1
X

mD1

�

cos
�

�m.2n� 1/=N
�

� cos
�

�m.2nC 1/=N
�

�

D OX2n�1 � OX2nC1 n D 1; 2; : : : ; N=2 � 1: (6.35)

Thus the even terms of f OXng can be computed using equation (6.34) and the odd terms can be com-

puted recursively using equation (6.35). The starting value for the recursion OX1 can be computed

from its definition

OX1 D 1
2
.x0 � xN /C

N �1
X

mD1

xm cos.�m=N/: (6.36)

The procedure can be summarized as follows:

1. Form the sequence fymg using equation (6.33)

2. Take the FFT of the real sequence fymg to obtain fRn C iIng.

3. Compute the even terms OX2n using OX2n D Rn.

4. Compute the odd terms OX2nC1 using the recursion OX2nC1 D OX2n�1 � In starting from
OX1 D 1

2
.x0 � xN /C

PN �1
mD1 xm cos.�m=N/:
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