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Chapter 1

Introduction

This report contains a number of topics that the authors have found to be important in
the modeling of sonar transducers and transducer arrays. The work was sponsored by ONR
code 321SS under the direction of Jan Lindberg. Much of the material in this report is
taken from the Handbook of Acoustic Projector Technology [G. Benthien and D. Barach,
Handbook of Acoustic Projector Technology. SPAWAR Technical Document 2980, Rev. 1
(1998)]. This handbook had limited distribution since some of the material was classified as
military critical, The primary purpose of this report is to present the non military critical
parts of the handbook in a form that is available to a larger audience. In addition, some
of the sections have been expanded and some new material added. The portions of this
report that deal with transducer and array modeling were compiled primarily by the authors
with assistance from Don Barach, David Gillette, and Jerry Dejaco. The chapter on PZN
ceramic materials was compiled by Dr. Steven Pilgrim of Alfred University. The chapter on
Terfenol magnetostrictive materials was supplied by Dr. Arthur Clark formerly of NSWC,
Carderock and now with Art Clark Associates. This report was placed on a CD-ROM so
that a number of non copyright protected reference documents could be included. The
included documents are listed in the LIST OF DOCUMENTS ON CD section. Throughout
this report, references to documents that are contained on the CD-ROM are highlighted
in blue. The highlighted documents can be accessed by clicking on the highlighted links.
Internal links such as equation or figure references are highlighted in red. It will be noticed
that not all subjects are covered to the same depth. In those cases where the material is
widely available in the literature, only a summary is usually given. In those cases where the
material is either not available or is difficult to obtain, a more detailed discussion is given.

The second chapter contains material on acoustic modeling. It is well known that acoustic
loading has a big impact on transducer and array performance. This chapter contains a re-
view of acoustic fundamentals as well as a description of various methods for computing the
acoustic loading and radiation. The third chapter contains material on modeling the struc-
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tural components of a transducer. It covers finite element modeling of elastic, piezoelectric
and magnetostrictive components as well as one-dimensional plane-wave and “lumped pa-
rameter” models. The fourth chapter contains material on structure-acoustic coupling. Here
it is shown how the acoustic and structural models can be combined to predict the output of a
transducer or an array of transducers. The fifth chapter discusses electrical interconnections.
In an array it is possible for the elements to interact electrically as well as through the acous-
tic medium depending on how the elements are connected electrically. This chapter presents
a unified approach to handling of these electrical interactions. The sixth chapter contains
some typical material parameters that can be used in transducer modeling when more accu-
rate parameters are not available from measurements. The seventh chapter discusses briefly
some specific transducer types that are currently of interest to the Navy as well as private
industry. Some of the relevant material in this chapter can not be presented in this report
since it is regarded as military critical. In those cases references are given to reports that
discuss the modeling details. Chapter eight contains links to several transducer documents
published by Ralph Woollett who was a pioneer in this area. The referenced documents
are contained on this CD-ROM. The last two chapters contain information on some newer
transducer materials. Chapter nine contains information on Lead Magnesium Niobate as
an active source material. Chapter ten contains information on rare earth magnetostrictive
materials.

It is hoped that the material in this report will be of use to future transducer designers and
analysts.
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Chapter 2

Acoustic Modeling

2.1 The Acoustic Wave Equation

The principal quantity of interest in classical (linear) acoustics is the acoustic pressure p(x, t)
which is a function of both position and time. The acoustic pressure is the excess pressure
over the hydrostatic pressure due to compressional waves in the medium. The acoustic
pressure p(x, t) satisfies the wave equation

�p =
1
c2
p̈ =

1
c2
∂2p

∂t2
. (2.1.1)

Here � is the spatial Laplacian operator and c is the speed of sound in the fluid medium.
For water c is approximately 1500 m/s and for air c is approximately 330 m/s. The pressure
p is related to the particle acceleration ü by the equation of motion

−∇p = ρü = ρ
∂2u

∂t2
. (2.1.2)

Here ∇ is the spatial gradient operator and ρ is the static density of the fluid medium. For
water ρ is approximately 1000 kg/m3 and for air ρ is approximately 1.2 kg/m3. Two good
references on the fundamentals of acoustics are [Allan D. Pierce, Acoustics, Acoustical Soci-
ety of America Publication (1989)] and [P.M. Morse and K.U. Ingard, Theoretical Acoustics,
McGraw-Hill (1968)]. Although the acoustic equations for air and water have the same form,
the differences in their sound velocity and density leads to quite different behavior. Since air
is easily compressed, the acoustic pressure in air is relatively small and the particle motions
are relatively large. In water the behavior is just the opposite — the acoustic pressure is
relatively high and the particle motions are extremely small. For this reason, most acoustic
receivers in water are pressure sensing devices.
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Let us now consider some general ideas relating to the production of sound in water. Recall
that acoustic waves are compressional in nature. Thus, to produce sound a vibrating source
must compress the water. Two properties of water work against its compression. First, as a
material water is relatively incompressible. In fact, it is often considered incompressible in
the analysis of fluid flow. Second, water has the ability to flow. This means that water will
tend to flow away from a vibrating source rather than stay put and be compressed. How
then do we produce sound in water? The main thing we have going for us is the inertia
of the water. If the vibrating source can accelerate fast enough, the inertia of the fluid
will restrain its flow and it can be compressed. Thus, the acceleration of the source is key
to sound production. This is the reason it is much easier to produce sound with a high
frequency vibrator than with a low frequency one. For a given maximum displacement, a
high frequency vibrator has greater acceleration than its low frequency counterpart. Thus,
at low frequencies a source generally must produce larger displacements and have a larger
radiating area.

Often in acoustics it is more convenient to work in the frequency domain than in the time do-
main. By frequency domain we mean the Fourier transform domain. The Fourier transform
P of p is defined by the pair of relations

p(x, t) =
∫ ∞

−∞
P (x, ω)eiωt df (inverse Fourier transform), (2.1.3a)

where

P (x, ω) =
∫ ∞

−∞
p(x, t)e−iωt dt. (Fourier transform) (2.1.3b)

The transform variable ω is called the angular frequency, and the related quantity f = ω/(2π)
is called the frequency. It should be noted that whereas the pressure p is a real quantity,
the transformed pressure P is in general complex. The Fourier transform is useful in linear
problems where the transform operator commutes with the differential or integral operators
involved in the problem. Time derivatives become algebraic operations in the frequency
domain. For example, the Fourier transform of ṗ is iωP . Time delays are also easy to handle
in the frequency domain. For example, the Fourier transform of p(t− τ) is e−iωτP (ω). The
time delay most often encountered in acoustic problems is the time d/c for a sound wave
to travel a distance d. The Fourier transform of p(t − d/c) is e−ikdP (ω), where k = ω/c is
called the acoustic wavenumber. Parseval’s theorem for Fourier transforms relates the time
integral of p2 to the frequency integral of |P |2, i.e.,∫ ∞

−∞
p2(x, t) dt =

∫ ∞

−∞
|P (x, ω)|2 df. (2.1.4)

Since p is a real quantity, it can be shown that the Fourier transform P satisfies

P (−ω) = P ∗(ω), (2.1.5)
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where * denotes complex conjugate. Thus, the pressure p is completely determined by P (ω)
for positive frequencies. In fact

p(t) =
∫ ∞

0
[P (ω)eiωt + P ∗(ω)e−iωt] df. (2.1.6)

Let us denote the integrand of equation (2.1.6) by pω(t), i.e.,

pω(t) = P (ω)eiωt + P ∗(ω)e−iωt. (2.1.7)

Clearly, pω is a real sinusoidal function of time with frequency f . The function pω can also
be written in terms of trigonometric functions as follows

pω(t) = 2 Real(Peiωt) (2.1.8a)
= 2 Real(P ) cos(ωt) − 2 Imag(P ) sin(ωt) (2.1.8b)
= 2|P | cos(ωt+ φ), (2.1.8c)

where φ is defined by

cos(φ) =
Real(P )

|P | and sin(φ) =
Imag(P )

|P | . (2.1.9)

Clearly, the peak value p̂ω of pω is given by

p̂ω = 2|P (ω)|. (2.1.10)

The root-mean-square value prms(ω) is the square root of the average over a period of p2
ω. It

is given by

prms(ω) =
√

2|P (ω)| =
1√
2
p̂ω. (2.1.11)

The Fourier transformed pressure can be normalized so that its absolute value is the rms
pressure. If we define P̄ by

P̄ =
√

2P, (2.1.12)

then |P̄ | = prms.

The Fourier transformed pressure P (x, ω) [and also P̄ ] satisfies the reduced wave equation

�P + k2P = 0, (2.1.13)

where k = ω/c is the acoustic wavenumber. The equation of motion given in (2.1.2) can be
expressed in terms of transformed variables as

−∇P = −ω2ρU = iωρV, (2.1.14)
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where U is the Fourier transform of the displacement u and V is the Fourier transform of
the velocity v = u̇.

The pressure p and particle velocity v also satisfy the following analog of Poynting’s theorem
in electromagnetics

Ẇ + div I = 0, (2.1.15)

where

W =
1
2
ρ(v · v) +

1
2
p2

ρc2
and I = pv. (2.1.16)

The quantity 1
2ρ(v · v) is called the acoustic kinetic energy density, the quantity 1

2p
2/(ρc2) is

called the acoustic potential energy density, and the quantity I is called the acoustic intensity
vector. Integrating equation (2.1.15) over a fluid volume V bounded by the surface S, we
have

K̇ + U̇ +
∫

S

pv · n = 0, (2.1.17)

where K = 1
2

∫
V
ρv · v is the kinetic energy and U = 1

2

∫
V
p2/(ρc2) is the potential energy.

Equation (2.1.17) is a power balance relation for the fluid volume V. It basically says that
the power entering the volume through the boundary equals the time rate of change of the
sum of the kinetic and potential energy in the volume.

If pω and vω are the sinusoidal functions of time associated with the pressure p and velocity
v as in equation (2.1.6), then it can be shown that the relation (2.1.15) also holds for pω and
vω. For these sinusoidal functions the average Iavg of I over a period is given by

Iavg = 2 Real(PV ∗) = Real(P̄ V̄ ∗). (2.1.18)

Since pω and vω are periodic functions of time, the average over a period of Ẇ is zero and
hence equation (2.1.15) implies

div Iavg = 0. (2.1.19)

If Srad is a radiating surface and S is a surface completely enclosing Srad and no other sources,
then the divergence theorem applied to equation (2.1.19) gives∫

Srad

Iavg · n =
∫

S

Iavg · n, (2.1.20)

where n is the outward unit normal vector. The integrals in equation (2.1.20) represent the
average power Pavg radiated by the source. Moreover,

Pavg = 2 Real
∫

Srad

P (V ∗ · n) = Real
∫

Srad

P̄ (V̄ ∗ · n) (2.1.21)

= 2 Real
∫

S

P (V ∗ · n) = Real
∫

S

P̄ (V̄ ∗ · n). (2.1.22)
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If we let S be a very large spherical surface of radius R surrounding the source, then the
pressure and normal particle velocity on this surface approximately obey the plane wave
relation

P̄ = ρc(V̄ · n). (2.1.23)

Combining equations (2.1.22) and (2.1.23), we have

Pavg =
1
ρc

∫
S

|P̄ |2 (2.1.24)

=
|P̄ax|2
ρc

∫
S

|P̄ |2
|P̄ax|2

(2.1.25)

=
4πR2|P̄ax|2

ρc

1
4π

∫ π

0
sin θ dθ

∫ 2π

0
B(θ, φ) dφ, (2.1.26)

where B(θ, φ) = |P̄ |2/|P̄ax|2 is called the beam pattern of the source and P̄ax is the pressure
on S in some preassigned direction (usually the direction of maximum response). Taking the
logarithm of equation (2.1.26), we obtain

10 log10 Pavg = 10 log10

(
4π
ρc

)
+10 log10(R

2|P̄ax|2)+10 log10

(
1
4π

∫ π

0
sin θ dθ

∫ 2π

0
B(θ, φ) dφ

)
.

(2.1.27)
Let P0 be a reference pressure (usually one micro Pascal), let R0 be a reference distance
(usually one meter), and let P0 be a reference power (usually one watt). Equation (2.1.27)
can be rearranged to give

SL = −10 log10

(
4πP 2

0R
2
0

ρcP0

)
+ 10 log10 Pavg + DI, (2.1.28)

where SL is called the source level and is defined by

SL = 10 log10

(
R2|P̄ax|2
R2

0P
2
0

)
; (2.1.29)

DI is called the directivity index and is defined by

DI = 10 log10

(
4π∫ π

0 sin θ dθ
∫ 2π

0 B(θ, φ) dφ

)
. (2.1.30)

For ρ = 1000 Kg/m3, c = 1500 m/sec, P0 = 1 µPa, R0 = 1 m, and P0 = 1 Watt, the first
term on the right-hand side of equation (2.1.28) is approximately equal to 170.8. For an
omnidirectional source DI = 0. Quantities such as source level and directivity index that are
logarithms of ratios of power like quantities are given the label dB (decibel). For example, if
SL has the value 10, we say that the source level is 10 dB re 1µPascal at 1 meter. It should
be noted that although the reference distance in the definition of SL is 1 meter, the axial
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pressure occurring in the definition must be in the far-field of the source (where pressure
magnitude decays like 1/R).

In scattering problems the incident pressure pinc is the pressure that would be present if
the scattering object were removed. If the source of the incident pressure is far from the
scattering object, pinc is usually taken to be a plane wave since the wave is approximately
planar in the vicinity of the scatterer. If p is the total acoustic pressure present in a scattering
problem, then the scattered pressure ps is defined by

ps = p− pinc. (2.1.31)

Clearly, the incident and scattered pressures also satisfy the acoustic wave equation.

To uniquely determine the pressure it is necessary to specify some initial and boundary
conditions in addition to the requirement that the wave equation be satisfied. In the time
domain we usually specify initial conditions throughout the region of interest for both p and
ṗ as well as boundary conditions on either p or its normal derivative. It follows from equation
(2.1.2) that the normal derivative of pressure is proportional to the normal acceleration. In
the time domain these boundary and initial conditions are sufficient to uniquely determine
p for both interior (bounded region) and exterior (unbounded region) problems. In the
frequency domain we usually specify either P or its normal derivative on the boundary.
It follows from equation (2.1.14) that the normal derivative of P is proportional to the
normal acceleration and also to the normal velocity. These boundary conditions are sufficient
to determine p uniquely for interior problems as long as the frequency is not one of the
resonance frequencies of the interior region. For exterior problems in the frequency domain
it is necessary to supplement the boundary conditions with a radiation condition at infinity
in order to eliminate the possibility of waves coming in from infinity. This condition usually
takes the form

lim
r→∞

r

(
∂p

∂r
+ ikp

)
= 0 (2.1.32)

due to Sommerfeld. In effect this condition says that the pressure field looks locally like
an outgoing spherical wave at large distances from the sound source. This condition can
be eliminated if the fluid is considered to be slightly lossy (complex sound velocity). If
the incident field in a scattering problem is taken to be a plane wave, then neither the
incident pressure nor the total pressure satisfies the outgoing radiation condition. Therefore,
in scattering problems, the outgoing radiation condition is applied to the scattered pressure.

For reference purposes we have included expressions for the gradient, divergence and Lapla-
cian operators in Cartesian, cylindrical, and spherical coordinate systems.
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Cartesian Coordinates:

∇p =
(
∂p

∂x
,
∂p

∂y
,
∂p

∂z

)
(2.1.33a)

div v =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
(2.1.33b)

�p =
∂2p

∂x2 +
∂2p

∂y2 +
∂2p

∂z2 . (2.1.33c)

Cylindrical Coordinates (x = r cosφ, y = r sinφ, z = z):

∇p =
(
∂p

∂r
,
1
r

∂p

∂φ
,
∂p

∂z

)
(2.1.34a)

div v =
∂vr

∂r
+

1
r

∂vφ

∂φ
+
∂vz

∂z
(2.1.34b)

�p =
1
r

∂

∂r

(
r
∂p

∂r

)
+

1
r2

∂2p

∂φ2 +
∂2p

∂z2 . (2.1.34c)

Spherical Coordinates (x = r sin θ cosφ, y = r sin θ sinφ, z = cos θ):

∇p =
(
∂p

∂r
,
1
r

∂p

∂θ
,

1
r sin θ

∂p

∂φ

)
(2.1.35a)

div v =
∂vr

∂r
+

1
r

∂vθ

∂θ
+

1
r sin θ

∂vφ

∂φ
(2.1.35b)

�p =
1
r2

∂

∂r

(
r2∂p

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂p

∂θ

)
+

1
r2 sin2 θ

∂2p

∂φ2 . (2.1.35c)

2.2 Analytic Solutions of the Wave Equation

Most analytic solutions of the reduced wave equation are obtained by a technique called
separation of variables. In this technique we look for solutions that are products of functions
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each of which depends on only one coordinate. For example, in spherical coordinates we
would look for solutions of the form F (r)G(θ)H(φ). Of course, if we find solutions of this
form, we can construct other solutions from sums and/or integrals of these solutions. In fact,
it is sums and integrals of separable solutions that we are most interested in. It is not always
possible to find solutions which are separable. In fact, there are only eleven independent
coordinate systems which allow separable solutions to the reduced wave equation. These
coordinate systems are 1) rectangular coordinates, 2) circular cylinder coordinates, 3) elliptic
cylinder coordinates, 4) parabolic cylinder coordinates, 5) spherical coordinates, 6) conical
coordinates, 7) parabolic coordinates, 8) prolate spheroidal coordinates, 9) oblate spheroidal
coordinates, 10) ellipsoidal coordinates, and 11) paraboloidal coordinates. Thus, to find a
separable solution we must work in one of these eleven coordinate systems. In addition, the
boundary surface must coincide with one of the coordinate surfaces. For example, a finite
cylinder could not be solved using this technique. It is clear that most problems that occur
in practice can not be solved by separation of variables. In fact, in most cases one must
resort to a purely numerical technique in order to obtain a solution. Nevertheless, analytic
solutions like those obtained by separation of variables do serve at least two purposes. One,
they help us develop our intuition as to how solutions should behave. Secondly, they provide
useful test cases for validating numerical procedures. In developing a numerical method it
is always helpful to try it out on a problem for which we know the answer.

In this section we will illustrate the method of separation of variables by means of the problem
of a circular piston radiator on a rigid spherical baffle. The geometry of the problem is shown
in Figure 2.1.

Clearly, with the coordinate system shown, the pressure is not a function of the circumfer-
ential angle φ. Thus, the reduced wave equation in spherical coordinates reduces to

1
r2

∂

∂r

(
r2∂P

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂P

∂θ

)
+ k2P = 0. (2.2.1)

The boundary condition on the normal velocity V (θ) takes the form

V (θ) =

{
V̄ 0 ≤ θ ≤ θ0

0 θ0 < θ ≤ π.
(2.2.2)

In addition, the solution must satisfy the outgoing radiation condition at infinity. It can
be shown that in a separable solution F (r)G(θ), both F and G must be eigenfunctions of
the differential operator in equation (2.2.1). Thus, in this case we can take G(θ) to be a
Legendre polynomial Pn(cos θ) in cos θ. These Legendre polynomials satisfy the differential
equation

1
sin θ

d

dθ

[
sin θ

dPn(cos θ
dθ

]
+ n(n+ 1)Pn(cos θ) = 0 (2.2.3)
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Figure 2.1. Coordinate system for circular piston on a sphere

and the orthogonality condition

∫ π

0
Pm(cos θ)Pn(cos θ) sin θ dθ =

{
0 m �= n

2
2n+1 m = n

. (2.2.4)

Since the Legendre polynomials form a complete set of orthogonal functions, we can expand
the pressure P in terms of these functions as follows

P (r, θ) =
∞∑

n=0

Fn(r)PN(cos θ). (2.2.5)

Substituting equation (2.2.5) into the reduced wave equation (2.2.1) and making use of
equation (2.2.3), we get

∞∑
n=0

{
1
r2

d

dr

(
r2dFn

dr

)
+
[
k2 − n(n+ 1)

r2

]
Fn

}
Pn(cos θ) = 0. (2.2.6)

Since the Legendre polynomials are orthogonal functions, the coefficients in equation (2.2.6)
must all be zero, i.e.,

1
r2

d

dr

(
r2dFn

dr

)
+
[
k2 − n(n+ 1)

r2

]
Fn = 0 for all n (2.2.7)
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or equivalently
d

dr

(
r2dFn

dr

)
+ [k2r2 − n(n+ 1)]Fn = 0 for all n. (2.2.8)

Equation (2.2.8) is a spherical Bessel equation having the general solution

Fn(r) = αnh
(1)
n (kr) + βnh

(2)
n (kr), (2.2.9)

where h(1)
n and h(2)

n are spherical Hankel functions of the first and second kind. Recall that

h(1)
n (kr) = jn(kr) + iyn(kr) and h(2)

n (kr) = jn(kr) − iyn(kr). (2.2.10)

Since h(1)
n behaves like an incoming wave at large distances from the source, we must have

αn = 0 for all n. Thus,
Fn(r) = βnh

(2)
n (kr). (2.2.11)

Substituting equation (2.2.11) into equation (2.2.5), we obtain

P (r, θ) =
∞∑

n=0

βnh
(2)
n (kr)Pn(cos θ). (2.2.12)

The normal velocity V (θ) can be expanded in terms of Legendre polynomials as follows

V (θ) =
∞∑

n=0

VnPn(cos θ), (2.2.13)

where

Vn =
(2n+ 1)V̄

2

∫ θ0

0
Pn(cos θ) sin θ dθ. (2.2.14)

It follows from the equation of motion and equation (2.2.12) that

V (θ) = − 1
iωρ

∂P

∂r
(a, θ) = − 1

iρc

∞∑
n=0

βnh
(2)
n

′
(ka)Pn(cos θ). (2.2.15)

Comparing equations (2.2.13) and (2.2.15), we see that

βn = − iρcVn

h
(2)
n

′
(ka)

. (2.2.16)

Thus,

P (r, θ) = −iρc
∞∑

n=0

Vn
h

(2)
n (kr)

h
(2)
n

′
(ka)

Pn(cos θ). (2.2.17)

Equation 2.2.17 is the solution we were seeking.
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2.3 Plane Wave Solutions

In this section we consider a problem in which the boundary condition has the form of a
travelling plane wave with wavenumber κ. The solution will illustrate an important relation
between the wavenumber of the boundary excitation and radiated acoustic energy. Let us
consider a Cartesian coordinate system with coordinates x, y, z and suppose that the normal
velocity distribution on the plane z = 0 has the form of a plane wave of unit amplitude
travelling in the negative x-direction, i.e.,

v(x, y, z) = eiκx. (2.3.1)

In Cartesian coordinates the reduced wave equation has the form

∂2P

∂x2 +
∂2P

∂y2 +
∂2P

∂z2 + k2P = 0. (2.3.2)

We will assume a solution of the form

P (x) = A(z)eiκx. (2.3.3)

Substituting equation (2.3.3) into equation (2.3.2), we see that A must satisfy

A′′(z) + (k2 − κ2)A(z) = 0. (2.3.4)

The general solution of equation (2.3.4) satisfying the outgoing radiation condition is

A(z) =

{
αe−i

√
k2−κ2z k > κ

αe−√
κ2−k2z κ > k,

(2.3.5)

where α is a constant which can be determined from the boundary condition. For the case
we are considering

α =

{
ωρ√

k2−κ2 k > κ
iωρ√
κ2−k2 κ > k.

(2.3.6)

Notice that for κ > k the solution decays exponentially away from the boundary surface.
Thus, such waves are not effective radiators of acoustic energy. A wave for which κ > k is
called an evanescent wave. Similar results hold for high wavenumber waves on other types
of surfaces.

2.4 Point Sources and Dipoles

In this section we will discuss two solutions of the wave equation that play a special role in
acoustics. The function G(x, y) defined by

G(x, y) =
e−ikr(x,y)

4πr(x, y)
r(x, y) = distance between x and y (2.4.1)
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is called the free-space Green’s function. As a function of x it satisfies the reduced wave
equation

�xG+ k2G = 0 (2.4.2)

in any region not including the point y. Clearly, G is singular when x = y. Physically, G
represents a point source located at y. The function G is symmetric in the variables x and
y, i.e., G(x, y) = G(y, x).

The function G′(x, y) defined by

G′(x, y) = ∇yG(x, y) · �q (2.4.3)

also satisfies the reduced wave equation in x in any region not including the point y. Physi-
cally, G′ represents a dipole source oriented in the direction of �q. The vector �q is called the
dipole moment of the source. Differentiating equation (2.4.1), we get

G′(x, y) = G(x, y)
[
ik +

1
r(x, y)

]
�r(x, y) · �q
r(x, y)

, (2.4.4)

where �r = x−y. Clearly, G′(y, x) = −G′(x, y). In the next section we will show how a general
solution to the reduced wave equation can be expressed in terms of a surface distribution of
point sources and dipoles.

2.5 Integral Relations

Previously we showed that interior and exterior acoustic problems can be formulated as
boundary-value problems involving the acoustic wave equation. Many methods for numer-
ically solving acoustic problems involve the reduction of a boundary-value problem for the
wave equation to an equivalent integral equation. In this section we will present some of the
basic integral relations involving solutions to the acoustic wave equation. We will begin by
considering integral relations in the frequency domain since most of the numerical methods
are based on a frequency domain formulation. A good discussion of these integral relations
is contained in [B.B. Baker and E.T. Copson, Huygen’s Principle, Oxford University Press
(1950)]. An excellent more recent reference is [T.W. Wu, Boundary Element Acoustics, WIT
Press (2000)].

Interior Problems For an interior problem in a region bounded by a closed surface S we
have the integral relations

∫
S

[
G(x, ξ)

∂P

∂n
(ξ) − P (ξ)

∂G

∂n
(x, ξ)

]
dS(ξ) =

⎧⎪⎨
⎪⎩

0 x outside S
α(x)P (x) x on S
P (x) x inside S,

(2.5.1)
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where G(x, ξ) is the free-space Green’s function defined by

G(x, ξ) =
e−ik|x−ξ|

4π|x− ξ| , (2.5.2)

n is the outward unit normal to S, and |x− ξ| is the distance between x and ξ. The function
α(x) has the value 1

2 at points where the surface is smooth, but can take on other values for
points that lie on edges, corners, etc. A general expression for α(x) is

α(x) = −
∫

S

∂

∂n

(
1

4π|x− ξ|
)
dS(ξ) (2.5.3)

[T.W. Wu, Boundary Element Acoustics, WIT Press (2000), chapter 2]. Since the normal
derivative of P is proportional to the normal velocity V [equation (2.1.14)], equation (2.5.1)
can be written

∫
S

[−iωρG(x, ξ)V (ξ) − P (ξ)
∂G

∂n
(x, ξ)

]
dS(ξ) =

⎧⎪⎨
⎪⎩
P (x) x inside S
α(x)P (x) x on S
0 x outside S.

(2.5.4)

If the normal velocity V is specified on S, then the middle relation in equation (2.5.4) gives
the following integral equation for the surface pressure P :

−α(ζ)P (ζ) −
∫

S

P (ξ)
∂G

∂n
(ζ, ξ) dS(ξ) = iωρ

∫
S

G(ζ, ξ)V (ξ) dS(ξ) ζ on S. (2.5.5)

Once this integral equation is solved for the surface pressure, the pressure at any interior
point can be obtained using the first relation in equation (2.5.4). As with the original
boundary-value problem, the solution of this integral equation is not unique at the frequencies
corresponding to the resonances of the interior region.

Exterior Problems For the exterior problem in the region exterior to S, we have the
integral relations

∫
S

[
G(x, ξ)

∂P

∂n
(ξ) − P (ξ)

∂G

∂n
(x, ξ)

]
dS(ξ) =

⎧⎪⎨
⎪⎩

−P (x) x outside S(
α(x) − 1

)
P (x) x on S

0 x inside S,
(2.5.6)

or equivalently,

∫
S

[−iωρG(x, ξ)V (ξ) − P (ξ)
∂G

∂n
(x, ξ)

]
dS(ξ) =

⎧⎪⎨
⎪⎩

−P (x) x outside S(
α(x) − 1

)
P (x) x on S

0 x inside S.
(2.5.7)
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If the normal velocity V is specified on the boundary S, then the middle relation in equation
(2.5.7) provides an integral equation for the surface pressure P , i.e.,

(
1 − α(ζ)

)
P (ζ) −

∫
S

P (ξ)
∂G

∂n
(ζ, ξ) dS(ξ) = iωρ

∫
S

G(ζ, ξ)V (ξ) dS(ξ) ζ on S. (2.5.8)

Once this integral equation is solved for the surface pressure, the pressure at any point in
the exterior region can be obtained using the first relation in equation (2.5.7). However,
for the exterior problem, there is an infinite discrete set of frequencies f1, f2, . . . for which
the integral equation does not have a unique solution. These frequencies are the resonance
frequencies of the interior problem for the boundary condition P = 0 on S. As one might
expect, numerical methods based on these integral equations have a problem when the
frequency is close to one these interior resonance frequencies. A large volume of literature
describes various methods for overcoming this difficulty [G.W. Benthien and H.A. Schenck,
Nonexistence and Nonuniqueness Problems Associated with Integral Equation Methods in
Acoustics]. The resonance frequencies f1, f2, . . . are not resonances of the problem of interest
as was the case with the interior problem. There are no resonances of the exterior problem.
The exterior problem has a unique solution at all frequencies. The interior resonance problem
is a mathematical difficulty, not a physical one. What happens at these frequencies is that
the integral equation is no longer equivalent to the original exterior acoustic boundary-value
problem. This nonuniqueness problem will be discussed in more detail in section 2.6.

2.6 Nonuniqueness of solution to Helmholtz Integral
Equation

In this section we will assume for simplicity that the boundary surface is smooth, and hence,
that α(x) = 1

2 for x on the boundary S. If P is the solution of the boundary-value problem

�P + k2P = 0 exterior to S
∂P

∂n
= q on S

lim
r→∞

r
(∂P
∂r

+ ikP
)

= 0 outgoing radiation condition,

(2.6.9)

then P satisfies the Helmholtz integral equation

1
2P (ζ) −

∫
S

P (ξ)
∂G

∂nξ

(ζ, ξ) dS(ξ) =
∫

S

G(ζ, ξ)q(ξ) dS(ξ) (2.6.10)

on S, where

G(ζ, ξ) =
e−ikr(ζ,ξ)

4πr(ζ, ξ)
. (2.6.11)
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For some values of k, the solution of (2.6.10) is not unique. In this section we will investigate
the conditions that give rise to this nonuniqueness and the nature of this nonuniqueness
when it occurs. We will begin by stating some basic results. If φ is a solution of the interior
problem

�φ+ k2φ = 0 interior to S, (2.6.12)

then φ satisfies the Helmholtz integral relations

∫
S

(
φ
∂G

∂n
−G

∂φ

∂n

)
=

⎧⎪⎨
⎪⎩

0 x exterior to S
−1

2φ(x) x on S
−φ(x) x interior to S.

(2.6.13)

If ψ is a solution of the exterior problem

�ψ + k2ψ = 0 exterior to S

lim
r→∞

r
(∂ψ
∂r

+ ikψ
)

= 0 outgoing radiation condition,
(2.6.14)

then ψ satisfies the Helmholtz integral relations

∫
S

(
ψ
∂G

∂n
−G

∂ψ

∂n

)
=

⎧⎪⎨
⎪⎩

0 x interior to S
1
2ψ(x) x on S
ψ(x) x exterior to S.

(2.6.15)

A function D of the form
D(x) =

∫
S

∂G(x, ξ)
∂nξ

σ(ξ) dS(ξ) (2.6.16)

is called a double layer potential. A double layer potential satisfies the wave equation in
both the interior and exterior regions. It also satisfies the outgoing radiation condition in
the exterior region. If ζ is on the surface S, then we have the following limit relations:

lim
x→ζ+

D(x) = 1
2σ(ζ) +

∫
∂V

∂G(ζ, ξ)
∂nξ

σ(ξ) dS(ξ) (2.6.17a)

lim
x→ζ−

D(x) = −1
2σ(ζ) +

∫
∂V

∂G(ζ, ξ)
∂nξ

σ(ξ) dS(ξ). (2.6.17b)

A double layer potential D also satisfies

lim
x→S+

∂D

∂n
(x) = lim

x→S−

∂D

∂n
(x), (2.6.18)

i.e., the normal derivative of D is continuous across the boundary surface.

Suppose km is a wave number corresponding to an eigenfrequency of the interior Dirichlet
problem and φm is a corresponding eigenmode, i.e., φm satisfies

�φm + k2
mφm = 0 inside radiating surface S (2.6.19a)
φm = 0 on the radiating surface S. (2.6.19b)
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Since the exterior Neumann problem is uniquely solvable, let ψm be the unique solution of

�ψm + k2ψm = 0 exterior to radiating surface S (2.6.20a)
∂ψm

∂n
=
∂φm

∂n
on radiating surface S (2.6.20b)

lim
R→∞

R

(
∂ψm

∂R
+ ikψm

)
= 0 outgoing radiation condition. (2.6.20c)

It follows from equation (2.6.15) that ψm satisfies

∫
S

(
ψm

∂G

∂n
−G

∂ψm

∂n

)
=

⎧⎪⎨
⎪⎩

0 x interior to S
1
2ψm(x) x on S
ψm(x) x exterior to S.

(2.6.21)

It follows from equations (2.6.13) and(2.6.19b) that∫
S

G
∂φm

∂n
= 0 on radiating surface S. (2.6.22)

It now follows from equations (2.6.22) and (2.6.20b) that∫
S

G
∂ψm

∂n
= 0 on radiating surface S. (2.6.23)

Combining the second relation in equation (2.6.21) with equation (2.6.23), gives∫
S

ψm
∂G

∂n
= 1

2ψm on radiating surface S. (2.6.24)

It follows from equations (2.6.24) and (2.6.10) that any linear combination of P and ψm

satisfies the integral equation (2.6.10) , i.e., the solution of the integral equation (2.6.10) is
nonunique.

We next show that any solution of the integral equation (2.6.10) is a linear combination of
P and a function ψ that satisfies

�ψ + k2ψ = 0 exterior to S
∂ψ

∂n
=
∂φ

∂n
on S

lim
R→∞

R

(
∂ψ

∂R
+ ikψ

)
= 0 outgoing radiation condition

for some internal Dirichlet eigenfunction φ.
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Let P ′ be any solution of equation (2.6.10) and define ψ = P ′ − P . Then ψ satisfies the
integral relation

1
2ψ(ζ) =

∫
S

∂G(ζ, ξ)
∂nξ

ψ(ξ) dS(ξ) ζ on S. (2.6.25)

Since the external Dirichlet problem has a unique solution, we can extend ψ to the exterior
region in such a way that it satisfies the wave equation and the outgoing radiation condition.
Define φ by

φ(x) =
∫

S

∂G(x, ξ)
∂nξ

ψ(ξ) dS(ξ). (2.6.26)

The function φ satisfies the wave equation in both the interior and exterior regions and
satisfies the outgoing radiation condition as R → ∞. It follows from equations (2.6.26),
(2.6.17a), and (2.6.25) that

lim
x→ζ+

φ(x) = 1
2ψ(ζ) +

∫
S

∂G(ζ, ξ)
∂nξ

ψ(ξ) dS(ξ)

= 1
2ψ(ζ) + 1

2ψ(ζ)
= ψ(ζ). (2.6.27)

Since φ satisfies the wave equation and the outgoing radiation condition in the exterior region
and coincides with ψ on the boundary, it follows from the uniqueness property of the exterior
Dirichlet problem that φ = ψ in the exterior region. It thus follows from equation (2.6.18)
that

lim
x→S−

∂φ

∂n
(x) = lim

x→S+

∂φ

∂n
(x) =

∂ψ

∂n
. (2.6.28)

It follows from equations (2.6.26), (2.6.17b), and (2.6.25) that

lim
x→ζ−

φ(x) = −1
2ψ(ζ) +

∫
S

∂G(ζ, ξ)
∂nξ

ψ(ξ) dS(ξ)

= −
∫

S

∂G(ζ, ξ)
∂nξ

ψ(ξ) dS(ξ) +
∫

S

∂G(ζ, ξ)
∂nξ

ψ(ξ) dS(ξ)

= 0. (2.6.29)

Thus, φ is an internal Dirichlet eigenfunction whose normal derivative coincides with the
normal derivative of ψ on the boundary surface S. We have now demonstrated that ψ has
the desired properties.

In CHIEF, the nonuniqueness is handled by supplementing the integral equation (2.6.10)
with equations of the form ∫

S

(
P
∂G

∂n
−Gq

)
= 0 (2.6.30)

evaluated at several interior points. It follows from equation (2.6.15) that P satisfies equation
(2.6.30) at every interior point. Suppose P +ψ is a solution of the integral equation (2.6.10).

2-17



We have seen that ψ can be extended to a solution of the exterior Neumann problem with

∂ψ

∂n
=
∂φ

∂n
on S (2.6.31)

for some interior Dirichlet eigenfunction φ. Since P satisfies equation (2.6.30), it follows that∫
S

(
∂G

∂n
(P + ψ) −Gq

)
=
∫

S

∂G

∂n
ψ interior to S. (2.6.32)

Since ψ satisfies equation (2.6.15), it follows that∫
S

∂G

∂n
ψ =

∫
S

G
∂ψ

∂n
=
∫

S

G
∂φ

∂n
interior to S. (2.6.33)

It follows from the first relation in equation (2.6.13) and the fact that φ = 0 on S that∫
S

G
∂φ

∂n
= φ interior to S. (2.6.34)

Thus, combining equations (2.6.32) through (2.6.34) gives∫
S

(
∂G

∂n
(P + ψ) −Gq

)
= φ interior to S. (2.6.35)

If there is only one independent interior eigenmode at the frequency of interest, then it
can be seen from equation (2.6.35) that P + ψ will not satisfy equation (2.6.30) for given
normal derivative of P if the interior point is chosen so that the interior eigenfunction does
not vanish. If there are m independent interior eigenmodes φ1, . . . , φm at the frequency of
interest, then

φ = α1φ1 + · · · + αmφm (2.6.36)

for some set of scalars α1, . . . , αm. Therefore, P + ψ will not satisfy equation (2.6.30) if we
choose m interior points x1, . . . , xm so that the system of equations

α1φ1(x1) + · · · + αmφm(x1) = 0
...

α1φ1(xm) + · · · + αmφm(xm) = 0

has only the zero solution α1 = · · · = αm = 0.
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2.7 Integral Equation Methods

Many of the numerical methods used for acoustic problems are based on the integral equa-
tions presented in section 2.5. The simplest discrete approximation for an integral equation
like equation (2.5.8) is the piecewise constant approximation. In this approximation, the
boundary surface S is subdivided into a finite number of subareas S1, S2, . . . , SN . On each
subarea Sn the pressure is approximated by a single value Pn and the normal velocity is
approximated by a single value Vn. With this approximation, the integral equation (2.5.8)
becomes

(
1 − α(ζ)

)
P (ζ) −

N∑
n=1

Pn

∫
Sn

∂G

∂n
(ζ, ξ) dS(ξ) = iωρ

N∑
n=1

Vn

∫
Sn

G(ζ, ξ) dS(ξ). (2.7.1)

Evaluating equation (2.7.1) at a set of reference points ζ1, ζ2, . . . , ζN (one on each subarea)
and taking α = 1

2 (the smooth value), we obtain the system of equations

N∑
n=1

AmnPn = iω
N∑

n=1

BmnVn m = 1, 2, . . . , N, (2.7.2)

where

Amn = 1
2δmn −

∫
Sn

∂G

∂n
(ζm, ξ) dS(ξ) (2.7.3)

Bmn = ρ

∫
Sn

G(ζm, ξ) dS(ξ) (2.7.4)

and δmn is the Kronecker delta defined by

δmn =

{
0 m �= n

1 m = n.
(2.7.5)

In this system of equations we have taken α to be 1
2 (the smooth value) since it is not

necessary or desirable to take the reference points ζm on an edge or corner. Usually, ζm is
taken at the center of the m-th subarea. The system of equations (2.7.2) can be written in
the matrix form

AP = iωBV = BV̇ , (2.7.6)

where P is an N-vector whose n-th component is Pn, V is an N-vector whose n-th component
is Vn, and V̇ is an N-vector whose n-th component is iωVn. The components of V̇ are the
Fourier transforms of the surface accelerations on each subarea.

If the velocities V1, V2, . . . , VN are prescribed, then the system of equations (2.7.2) can be
solved for the surface pressures P1, P2, . . . , PN . In solving the system of equations for the
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surface pressures it is important to take advantage of any geometric symmetries of the
radiating surface as they can be used to greatly reduce the computation cost. A general
approach to handling symmetry reductions for problems of this type is described in [Benthien,
G.W., Symmetry Reductions, unpublished notes].

The expression in equation (2.5.7) for the pressure at an arbitrary field point can be approx-
imated using the same discrete approximations, yielding

P (x) =
N∑

n=1

[An(x)Pn + iωBn(x)Vn], (2.7.7)

where

An(x) =
∫

Sn

∂G

∂n
(x, ξ) dS(ξ) and Bn(x) = ρ

∫
Sn

G(x, ξ) dS(ξ). (2.7.8)

This expression can be used to calculate the pressure at an arbitrary field point x once the
surface pressures and normal velocities have been determined. In the next section we will
discuss approximations that can be made when the field point is in the far-field of the source.

In the vicinity of one of the frequencies for which the underlying integral equation does not
have a unique solution, the system of equations (2.7.2) becomes numerically ill-conditioned.
One method of overcoming this difficulty is to add some additional equations obtained by
evaluating a discretized version of the last relation in equation (2.5.7) at a selected number
of interior points. The overdetermined system of equations is then solved in a least squares
sense. A more complete discussion of this approach to solving acoustic problems is contained
in [Benthien, Barach, and Hobbs CHIEF 2004 Users Manual]. This method as well as a num-
ber of other methods for handling this nonuniqueness problem are discussed in the reference
[G.W. Benthien and H.A. Schenck, Nonexistence and Nonuniqueness Problems Associated
with Integral Equation Methods in Acoustics]. It is possible to obtain other approximations
using higher order finite element interpolation functions; however, care must be taken to
correctly handle nodes lying on edges or corners since the normal velocity is discontinuous
at such points.

2.8 Far-Field Approximations

We have seen previously in equation (2.5.7) that the pressure P (x) at an external point x
can be written

P (x) =
∫

S

[
P (ξ)

∂G

∂n
(x, ξ) + iωρG(x, ξ)V (ξ)

]
dS(ξ), (2.8.1)

where G is the free space Green’s function, P (ξ) is the surface pressure, and V (ξ) is the
surface normal velocity. In this section we are interested in the case where x is far from
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the source. Let 0 be an origin located near the radiating body (usually inside the radiating
surface S). In addition, let �r, �R, and �δ be vectors as shown in Figure 2.2. The magnitudes
of these vectors will be denoted by r, R, and δ respectively.

��

r
δ

r
�

r
�

��������	
��


����� ������	
��

ξ

Figure 2.2. Location of points and vectors involved in far-field approximation

Clearly,
�r = �R− �δ. (2.8.2)

Moreover, when R � δ,

r2 = �r · �r = R2 − 2�R · �δ + δ2

= R2

(
1 − 2

�R · �δ
R2 +

δ2

R2

)

.= R2

(
1 − 2

�R · �δ
R2

)
. (2.8.3)

By the binomial formula, we have

(1 − x)1/2 .= 1 − 1
2x when |x| 	 1. (2.8.4)

Therefore,

r
.= R

(
1 −

�R · �δ
R2

)
= R−

�R · �δ
R

. (2.8.5)

Using the approximation (2.8.5) in e−ikr and approximating 1/r by 1/R, we have

G(x, ξ) .=
e−ikR

4πR
eik �R·�δ/R. (2.8.6)
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Similarly, ∂G
∂n

can be approximated by

∂G

∂n
.= ik

e−ikR

4πR
(�R · �n/R)eik �R·�δ/R. (2.8.7)

Substituting the approximations of equations (2.8.6) and (2.8.7) into equation (2.8.1), we
obtain

P (x) .=
e−ikR

4πR

[
ik

∫
S

P (ξ)(�R · �n/R)eik �R·�δ/R dS(ξ) + iωρ

∫
S

V (ξ)eik �R·�δ/R dS(ξ)
]
. (2.8.8)

Note that the expression in brackets in equation (2.8.8) depends on the field point x only
through the unit vector �R/R. Thus, in terms of a spherical coordinate system at the origin,
equation (2.8.8) can be written in the form

P (R, θ, φ) .= A(θ, φ)
e−ikR

R
. (2.8.9)

Thus, in the far-field, the pressure from any source decays like 1/R. The beam pattern of
the source B(θ, φ) is defined by

B(θ, φ) = |A(θ, φ)|/|A(θ0, φ0)|, (2.8.10)

where (θ0, φ0) is a specified direction (usually the direction of maximum response). As an
example, the computation of the far-field pattern of an arbitrary-shaped piston on an infinite
plane rigid baffle is described in [Benthien, G.W., Far-Field Pressure Due to a Planar Piston
of Arbitrary Shape, unpublished notes]

The question remains as to how far one must go out from the source for the far-field approx-
imations to hold. Two restrictions must be satisfied. At low frequencies, the approximation
of 1/r by 1/R is the dominant source of error. A rough rule-of-thumb is that R must be
greater than twice the maximum dimension of the source for this approximation to be valid.
At higher frequencies, the approximation of the phase term is the dominant source of error.
A good rule-of-thumb is that R must be greater than (maximum dimension)2/λ for this
approximation to be valid. Thus, a good far-field criterion is

R > max(2D,D2/λ), where D = maximum dimension of source. (2.8.11)

2.9 The Kirchhoff Time-Domain Integral Equation

Kirchhoff’s integral equation is the time-domain analog of the Helmholtz integral equation.
For smooth surfaces, it can be written as

1
2p(ζ, t) +

∫
S

1
4πr2

∂r

∂nξ

[
p(ξ, t− r/c) +

r

c
ṗ(ξ, t− r/c)

]
dS(ξ) =

ρ

∫
S

1
4πr

a(ξ, t− r/c) dS(ξ), (2.9.1)
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where p is the surface pressure and a is the normal surface acceleration. This can be obtained
by a Fourier transform of the Helmholtz integral equation if we use the fact that delays in
the time domain correspond to complex exponential multipliers in the frequency domain,
i.e.,

p(t− τ) ∼ e−iωτP (ω). (2.9.2)

We have written the Kirchhoff integral equation in terms of the normal acceleration instead of
the normal velocity as we did in the frequency domain. In the frequency domain, the relation
between displacement, velocity, and acceleration only involves multiplication or division by
iω factors. In the time domain, the relations involve derivatives that are harder to calculate
numerically. Note that Kirchhoff’s integral equation relates the values of pressure at the
present time in terms of values at earlier times. Thus, numerical solutions of this equation
are of a recursive nature. Analogous equations can be obtained for field points not on
the surface. One of the earliest attempts to solve Kirchhoff’s equation numerically was
contained in the paper [K.M. Mitzner, Numerical Solution for Transient Scattering from a
Hard Surface—Retarded Potential Technique, J. Acoust. Soc. Am., vol. 42, no. 2, pp.
391–397 (1967)]. The technique described in this paper has stability problems for very
small time steps. An approach for overcoming this stability problem is described in the
papers [G. Benthien and S. Hobbs, Solution of Kirchhoff’s Time-Domain Integral Equation
in Acoustics, unpublished notes] and [G. Benthien and S. Hobbs, Calculation of Acoustic
Loading on Transducers in the Time Domain]. To illustrate this method, we present some
calculated results for a sphere that is uniformly excited by an acceleration pulse. The pulse
shape consists of one half cycle of a sign wave whose period is 1.25 times the time required for
a sound wave to traverse the diameter of the sphere. Figure 2.3 shows a comparison between
the numerically calculated surface pressure and an analytical result. The sphere was divided
into eight subdivisions in the θ direction and 12 subdivisions in the φ direction. The time
step was 1/30 of the time for a sound wave to cross the diameter. The agreement here is
quite good. Figure 2.4 is a plot of the error between the analytic and numerical results for
the same problem. Note that the error is not random but has a definite periodic pattern.
Figure 2.5 shows the numerical evaluation for a field point interior to the sphere (the result
should be zero). Here again, we notice the nonrandom nature of the error. Figure 2.6 shows
the discrete Fourier transform of the interior point calculations. Note that there are peaks
at frequencies that correspond to the frequencies where the Helmholtz integral equation in
the frequency domain has a nonunique solution. Thus, the frequencies where the Helmholtz
integral equation has nonuniqueness problems shows up in the time domain solutions as an
error that does not decay to zero for large times. However, the error in the time domain is
not large enough to invalidate the solution. Figure 2.7 shows computed results for the case
where the time step is taken to be 1/90 of the time for a sound wave to cross the diameter.
Here, the solution becomes unstable at large times. The problem can be traced to errors in
calculating the time derivative of pressure in the Kirchhoff equation. The problem is that
the error in the calculated pressure does not go to zero as the time step becomes smaller
due to spatial discretization errors. Thus, difference approximations of the derivative tend
to amplify these errors for small time steps. The problem can be reduced by incorporating
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smoothing in the derivative approximation as one does in approximating the derivative of
an empirical function containing noise. One technique is to least-square fit a quadratic to a
number of points surrounding the point of interest and use the derivative of this quadratic
as the derivative approximation. Figure 2.8 shows the results for the same time step used
in Figure 2.7 when a five-point smoothing approximation to the derivative is used. Note
the stability of the solution has been greatly improved. A final remark is that the time and
spatial variations of the solution are related. Therefore, it probably does not make sense
to make the time subdivision finer and finer while keeping the same spatial subdivisions. I
believe that any more than 10 time steps for a wave to cross a spatial subdivision will not
give much improvement in accuracy, even if stability can be maintained.
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Figure 2.3. Theory vs. numerical for a half sine wave accelerated sphere.
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Figure 2.4. Error in surface pressure at pole and equator.
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Figure 2.5. Error at interior point vs. normalized time.
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Figure 2.6. Spectrum of interior point error vs. normalized frequency.
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Figure 2.7. Instability due to very small time steps.

0 1 2 3 4 5 6 7 8 9

Normalized Time

−2

0

2

4

6

8

10

12
×10−1

N
or

m
al

iz
ed

 P
re

ss
ur

e

analytic p at pole

Figure 2.8. Stabilizing effect of derivative smoothing (five-point).
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2.10 Infinite Element Methods

An infinite fluid element is similar to a conventional fluid finite element, except one of its
dimensions is infinite as shown in Figure 2.9.

nodenode

node node radiat ing surface

infinity

inf inite
e lement

Figure 2.9. A typical infinite element.

The interpolation functions used for this element are like those for conventional finite el-
ements in those directions where the element is finite. The difference is in the infinite
direction. The nature of the interpolation in the infinite direction is easiest to see by consid-
ering a one-dimensional problem as shown in Figure 2.10. The semi-infinite interval [a,∞)
can be mapped to the finite interval [−1, 1] using the mapping r → ζ defined by

ζ = 1 − 2a
r

r =
2a

1 − ζ
. (2.10.1)

On the interval [−1, 1], one can use interpolation functions of the form

φ(ζ) = P (ζ)e−ik(r−a) = P (ζ)e−ika 1+ζ
1−ζ , (2.10.2)

where P (ζ) is conventional finite element interpolating polynomial that vanishes at ζ = 1
(r = ∞). The exponential phase factor is added to account for the time lag inherent in an
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Figure 2.10. One-dimensional infinite element.

outgoing acoustic wave. In terms of the variable r, the interpolation functions take the form

φ(r) = P (1 − 2a/r)e−ik(r−a) =
e−ikr

r

(
a0 + a1

1
r

+ a2
1
r2 + · · · + an

1
rn

)
(2.10.3)

Thus, we see that the interpolation functions have the correct asymptotic form. This map-
ping approach can be extended to two and three dimensions. The big advantage of the
infinite element approach is that it is easily incorporated into a finite element program for
handling fluid-structure interaction problems. A good reference for infinite element meth-
ods is [Zienkiewicz, O.C., Emson, C., and Bettess, P., A Novel Boundary Infinite Element,
International Journal for Numerical Methods in Engineering, vol. 19, pp. 393–404 (1983)].

2.11 Wave Envelope Method

The wave envelope method is similar to the infinite element method. In fact, the same
interpolation functions and element geometry can be used in either method. To see the
difference between the two methods, we must go back to the derivation of the finite element
equations. One common approach in deriving the finite element equations is to use the
so-called Galerkin method. In this approach, the unknowns in the underlying differential
or integral equations are approximated by finite sums of interpolation functions where the
weights in these sums are now the unknowns. The finite element equations are obtained
by forming weighted integrals of the resulting approximate equations. For conventional
finite elements or infinite elements, the weighting functions are taken to be the same as the
interpolation functions. In the wave envelope method, the weighting functions are taken to
be the complex conjugates of the interpolation functions. This does not seem to be a big
difference, but it leads to finite element equations with a much simpler frequency dependence.
In fact the resulting finite element equations have the matrix form

(−ω2M + iωR +K)U = F, (2.11.1)
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where the mass matrixM , the damping matrix R, and the stiffness matrixK are independent
of frequency. This equation can be easily transformed to the following system of differential
equations in the time domain

MÜ +RU̇ +KU = F. (2.11.2)

Thus, the wave envelope method provides a method for solving acoustic-structure interaction
problems in the time domain. The SARA finite element program developed by Bolt, Beranek
and Newman for the government is one finite element program that incorporates both con-
ventional infinite elements and wave-envelope elements [Butler, M., Allik, H., et al., Practical
implementation of a p-version wave envelope infinite element for structural acoustic analy-
sis, Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics,
June 2001]. Two good general references on the wave-envelope method are [Astley, R.J.,
Macaulay, G.J., Coyette, J-P., and Cremers, L., Three-dimensional wave-envelope elements
of variable order for acoustic radiation and scattering. Part I. Formulation in the frequency
domain, J. Acoust. Soc. Am., 103(1), pp. 49–63 (1998)] and [Astley, R.J., Macaulay, G.J.,
Coyette, J-P., and Cremers, L., Three-dimensional wave-envelope elements of variable order
for acoustic radiation and scattering. Part II. Formulation in the time domain, J. Acoust.
Soc. Am., 103(1), pp. 64–72 (1998)].

2.12 Radiation Boundary Conditions

Another approach to the numerical solution of an exterior acoustic radiation problem is to
terminate the semi-infinite exterior region at some distance by a spherical surface and place
some kind of radiation boundary conditions on this spherical surface that approximates
the outgoing radiation condition. Usually, the fluid region out to the spherical surface is
modeled with conventional fluid finite elements. The natural boundary condition on the
outer boundary for the fluid finite elements involves specification of integrals of the form∫

S

∂P

∂r
φm dS (2.12.1)

where S is a spherical surface of radius R enclosing the radiator and φm is a finite element
interpolation function. Thus, we need radiation conditions on the outer boundary for ∂P

∂r
. It

can be shown that the pressure field exterior to the spherical surface S can be written as an
infinite series in inverse powers of r, i.e.,

P (r, θ, φ) = e−ikr

∞∑
n=1

Fn(θ, φ)
rn

. (2.12.2)

Bayliss et al [Bayliss, Gunzburger and Turkel, Boundary Conditions for the Numerical So-
lution of Elliptic Equations in Exterior Regions, SIAM J. APPL. MATH., Vol. 42, No. 2,
April 1982] developed a series of differential operators B1, B2, . . . such that Bn operating on
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the series in equation (2.12.2) gives zero for the first n terms. The first two of these operators
are given by

B1 =
∂

∂r
+ ik +

1
r

(2.12.3)

B2 =
(
∂

∂r
+ ik +

3
r

)(
∂

∂r
+ ik +

1
r

)
. (2.12.4)

The condition B1P = 0 on the surface r = R can be written

∂P

∂r
(R, θ, φ) = −

(
ik +

1
R

)
P (R, θ, φ). (2.12.5)

This condition is called a monopolar condition. It can be shown that B1P = O(1/r3). The
condition B2P = 0 on r = R can be written

∂p

∂r
(R, θ, φ) = −(1/R + ik)P (R, θ, φ) +

∂/∂θ[sin θ(∂P/∂θ)]
2r2(1/r + ik) sin θ

∣∣∣∣
r=R

+
1

2R2(1/R + ik) sin2 θ

∂2P

∂φ2 (R, θ, φ),
(2.12.6)

where ∂2P/∂r2 has been eliminated using the reduced wave equation �P + k2P = 0.
This second order boundary condition is called a dipolar condition. It can be shown that
B2P = O(1/r5). When this dipolar boundary condition is substituted into the finite element
boundary integrals of equation (2.12.1), integration by parts can be used to eliminate the
second order angular derivatives. These radiation boundary conditions have been imple-
mented in the ATILA finite element program and are described in [Bossut and Decarpigny,
Finite element modeling of radiating structures using dipolar damping elements, J. Acoust.
Soc. Am., 86(4), October 1989].
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2.13 An Integral Equation Variational Method

An alternative to the integral equation methods discussed previously is a variational method
described in [Ginsberg, J.H., Pierce, A.D., and Wu, X.-F., A Variational Principle for Sound
Radiation from Vibrating Bodies, Technical Report GTADRL-86-101, Georgia Institute of
Technology, November 1986]. In this reference a functional J(P ) of the surface pressure P
is developed which is stationary with respect to small variations in surface pressure. This
functional can be written

1
4π
J(P ) = iωρ

∫
S

P (ζ)U(ζ) dS(ζ)

+ 1
2k

2
∫

S

∫
S

[�n(ζ) · �n(ξ)]P (ζ)P (ξ)G(ζ, ξ) dS(ξ) dS(ζ)

− 1
2

∫
S

∫
S

[�n(ζ) × ∇P (ζ)] · [�n(ξ) × ∇P (ξ)]G(ζ, ξ) dS(ξ) dS(ζ), (2.13.1)

where P is the surface pressure, k is the acoustic wavenumber, �n is the outward unit normal
to S, and G is the free-space Green’s function defined by

G(ζ, ξ) =
e−ikr(ζ,ξ)

4πr(ζ, ξ)
. (2.13.2)

The quantity U involves the surface normal velocity V and is defined by

U(ζ) = V (ζ) +
1
4π

lim
ε→0

∫
S

V (ξ)�n(ζ) · ∇xG(x, ξ) dS(ξ) x = ζ + ε�n(ζ). (2.13.3)

The condition of stationarity can be written

δhJ(P ) = 0 for all admissable functions h, (2.13.4)

where the variation δhJ with respect to h is defined by

δhJ(P ) = lim
ε→0

J(P + εh) − J(P )
ε

. (2.13.5)

The variation with respect to a function h is the function space analog of the directional
derivative, where h plays the role of the direction of the derivative. In view of the definition
of J given by equation (2.13.1), the stationarity condition of equation (2.13.4) can be written

iωρ

∫
S

h(ζ)U(ζ) dS(ζ) + k2
∫

S

∫
S

[�n(ζ) · �n(ξ)]h(ζ)P (ξ)G(ζ, ξ) dS(ξ) dS(ζ)

−
∫

S

∫
S

[�n(ζ) × h(ζ)] · [�n(ξ) × ∇P (ξ)]G(ζ, ξ) dS(ξ) dS(ζ) = 0. (2.13.6)
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We will assume now that the surface pressure P can be expanded in terms of a set of functions
φn as follows

P (ξ) =
N∑

n=1

Pnφn(ξ). (2.13.7)

Replacing h successively by each φn and replacing P by the expansion (2.13.7) in equation
(2.13.6), leads to a system of N linear equations for the unknown quantities Pn. Once the
quantities Pn are determined, the pressure at any point on the surface can be calculated
using equation (2.13.7). The functions φn can be either local interpolation functions like
those used in finite element methods or global functions like those involved in Fourier series.

2.14 Doubly Asymptotic Approximations

In this class of approximations an asymptotic approximation valid at low frequencies is
smoothly joined to an asymptotic approximation valid at high frequencies. These methods
are also referred to as matched asymptotic methods. Two good references for the application
of these methods to acoustics are [Felippa, C.A., Top-Down Derivation of Doubly Asymp-
totic Approximations for Structure-Fluid Interaction Analysis, in Innovative Numerical
Analysis for the Engineering Sciences, edited by R.P. Shaw et al. (U.P. of Virginia,
Charlottesville, 1980), pp. 79–88.] and [Geers, T.L. and Felippa, C.A., Doubly asymptotic
approximations for vibration analysis of submerged structures, J. Acoust. Soc. Am., 73 (4),
April 1983, pp. 1152–1159.]

Low Frequency Approximations In section 2.7 we showed that the surface integral
equation relating pressure and normal velocity or acceleration could be approximated by the
system of equations

AP = BV̇ , (2.14.1)

where

Amn = 1
2δmn −

∫
Sn

∂G

∂n
(ζm, ξ) dS(ξ) (2.14.2)

Bmn = ρ

∫
Sn

G(ζm, ξ) dS(ξ) (2.14.3)

and G is the free-space Green’s function defined by

G(ζ, ξ) =
e−ikr(ζ,ξ)

4πr(ζ, ξ)
r(ζ, ξ) = distance between ζ and ξ. (2.14.4)

At low frequencies the Green’s function G and its normal derivative can be expanded in
terms of powers of kr. Various orders of approximation can be obtained by truncating these
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power series so that both sides of equation (2.14.1) are approximated by the same degree of
polynomial in kr. The first order approximation is given by

A0P = B0V̇ , (2.14.5)

where

A0
mn = 1

2δmn −
∫

Sn

∂G0

∂n
(ζm, ξ) dS(ξ) (2.14.6)

B0
mn = ρ

∫
Sn

G0(ζm, ξ) dS(ξ) (2.14.7)

and G0 is defined by

G0 =
1

4πr
. (2.14.8)

It should be noted that G0 is the free-space Green’s function for Laplace’s equation �P = 0
which is what the reduced wave equation reduces to at zero frequency. Since the matrices
in equation (2.14.5) are independent of frequency, this equation can be transformed to the
time-domain equations

A0p = B0v̇. (2.14.9)

If we define D to be a diagonal matrix whose diagonal entries are the surface areas of the
subareas in our discrete approximation, then equation (2.14.5) can be rearranged to give

DP = [D(A0)−1B0]V̇ ≡ MF V̇ . (2.14.10)

The matrix MF represents the mass loading of the fluid. The approximation given by
equation (2.14.10) is called the virtual mass approximation.

The next order of approximation is given by

A0P = B0V̇ + C0V̈ , (2.14.11)

where
C0 = − ρ

4πc
D. (2.14.12)

As before this approximation can be rearranged to give

DP = MF V̇ +QV̈ Q = D(A0)−1C0. (2.14.13)

It can be argued using energy arguments that only the symmetric part of the mass ma-
trix MF should be retained in these approximations [DeRuntz, J.A. and Geers, T.L.,Added
Mass Computation By The Boundary Integral Method, International Journal for Numerical
Methods in Engineering, Vol. 12, 531–549 (1978)].
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High Frequency Approximations At high frequencies the relation between pressure
and velocity tends to be local in nature. The simplest approximation is the plane wave
approximation

p = ρcv. (2.14.14)

We can write this relation in a matrix form like those occurring in the low frequency approx-
imations as follows

DP = ρcDV. (2.14.15)

Higher order approximations involve the local curvature of the surface. Consider a small
patch of the surface S as shown in Figure 2.11. At a point ξ on the surface patch we set up

z

y

x

ξ

�����

Figure 2.11. Local coordinate system at point of surface patch

a local coordinate system in which the z-axis is in the direction of the outward normal at ξ
and the x and y axes are in the tangent plane at ξ. By proper orientation of the x and y
axes, the surface patch in the vicinity of ξ can be represented approximately by the equation

z = κxx
2 + κyy

2, (2.14.16)

where κx and κy are the principal curvatures at ξ. At high frequencies the surface pressure
and normal velocity at ξ are approximately related by

ṗ− cκp = ρcv̇ κ = (κx + κy)/2. (2.14.17)

This approximation is referred to as the curved wave approximation. Clearly, the curved
wave approximation reduces to the plane wave approximation when the mean curvature κ
is set to zero. For a discretized problem this relation can be written in the matrix form

DṖ − cDKP = ρcV̇ , (2.14.18)
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where K is a diagonal matrix whose diagonal entries are the mean curvatures at the reference
points of the subareas of the discretization.

Matching Asymptotic Approximations In this section we will illustrate a general tech-
nique for smoothly matching high and low frequency asymptotic approximations. Consider,
for example, the matching of the virtual mass approximation at low frequencies and the
plane wave approximation at high frequencies. Thus, we want to match the following pair
of approximations

DP = iωMFV (virtual mass approximation) (2.14.19a)
DP = ρcDV (plane wave approximation). (2.14.19b)

We seek an approximate equation of the form

PP (iω)P = PV (iω)V, (2.14.20)

where PP and PV are polynomials in iω with matrix coefficients. This is the matrix analog
of assuming that the impedance is a rational function of iω. We want to choose these
polynomials so that equation (2.14.20) agrees with equation (2.14.19a) at low frequencies and
agrees with equation (2.14.19b) at high frequencies. In this case we seek an approximation
of the form

(I + iωA)P = (iωB)V, (2.14.21)

where the matrices A and B are to be determined. At low frequencies equation (2.14.21)
reduces to P = iωBV and at high frequencies it reduces to AP = BV . Comparing these
results to the low and high frequency approximations given in (2.14.19a) and (2.14.19b), we
see that

B = D−1MF and A =
1
ρc
B. (2.14.22)

Substituting these results into equation (2.14.21) and rearranging produces the approximate
relation

(ρcD + iωMF )P = (iωρcMF )V (2.14.23)

or equivalently
MF Ṗ + ρcDP = ρcMF V̇ . (2.14.24)

This approximation is often referred to as DAA1. Higher order approximations can be
obtained similarly and are discussed in the references.

2.15 Array Acoustic Interactions

The acoustic interaction between transducer elements of an array can often be a significant
factor in the performance of the array. Acoustic interactions are usually described in terms
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of mutual radiation impedances. The concept of mutual radiation impedance was first in-
troduced in connection with arrays of piston radiators. For such arrays the normal velocity
of the n-th element can be specified by a single value Vn. The acoustic force on the m-th
piston element can be written as a linear combination of the element velocities, i.e.,

Fm =
N∑

n=1

zmnVn, m = 1, . . . , N. (2.15.1)

The values zmn are called mutual radiation impedances. When m = n the values zmm are
called self radiation impedances. Figure (2.12) shows the self radiation impedance for a
circular piston of radius a normalized by ρc(πa2) as a function of the normalized frequency
ka. Figure (2.13) shows the mutual radiation impedance between two circular pistons having
a center-to-center spacing of d as a function of kd with ka = 1. The behavior of the radiation
impedances shown in these figures is typical of most radiators. For a few special geometries
the radiation impedances zmn can be computed analytically. For example, Pritchard [R.L.
Pritchard, Mutual Acoustic Impedance between Radiators in an Infinite Plane, J. Acoust.Soc.
Am.,32, no. 6, pp. 730–737 (1960)] derived the following expression for the mutual radiation
impedance between circular pistons on a plane

z12 = 2ρc(πa2)
∞∑

m=0

∞∑
n=0

Γ(m+ n+ 1/2)√
πm!n!

(a
d

)m+n

Jm+1(ka)Jn+1(ka)h
(2)
m+n(kd), (2.15.2)

where a is the radius of a piston, d is the center-to-center spacing between pistons, Jn is
the Bessel function of the first kind, and h

(2)
n is the spherical Hankel function of the second

kind. A general technique for calculating mutual radiation impedances of arbitrary shaped
pistons on an infinite plane rigid baffle is described in [Benthien, G.W., Mutual Interaction
of Pistons of Arbitrary Shape on a Planar Rigid Baffle, unpublished notes]. The report
[Sherman, C.H., Mutual Radiation Impedance Between Pistons on Spheres and Cylinders,
USL Research Report 405, November 1958] derives expressions for the mutual radiation
impedances between pistons on rigid spherical or cylindrical baffles. For most geometries
these radiation impedances can not be obtained analytically and must be computed using
numerical approximations to the basic differential or integral equations (finite elements, finite
differences, boundary element methods, etc.).

The vibratory motion of many transducers can not described by a single velocity value.
For example, it is generally necessary to use the superposition of a number of modes in
order to describe the motion of a flextensional transducer. Therefore, we need to generalize
equation (2.15.1) in order to handle arrays of such transducers.

Let Vn(·) denote the normal velocity distribution on the n-th element of an array, and let
Pn(·) be the pressure due to the array when the n-th element has the velocity distribution
Vn(·) and the other elements have zero velocity. By linearity, the surface pressure P (·) due
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Figure 2.12. Normalized self radiation impedance of a circular piston
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Figure 2.13. Normalized mutual radiation impedance for circular pistons
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to the array is given by

P (·) =
N∑

n=1

Pn(·). (2.15.3)

We will assume that there exist functions φ1
n(·), φ2

n(·), . . . , φM
n (·) such that the velocity dis-

tribution on the n-th element can be written

Vn(·) =
M∑

q=1

V q
nφ

q
n(·). (2.15.4)

These functions can be normal modes of the radiating structure or they can be interpolation
functions related to a finite element description of the structure. For programs like CHIEF
that use a piecewise constant representation of the velocity distribution, the functions φq

n(·)
have the property that they are identically 1 on one subdivision of the radiating surface of
the n-th element and are zero on all the other subdivisions. Furthermore, it will be assumed
that the functions φq

n(·) for different elements n are merely translations of each other. Of
course, it is desirable to choose the functions φq

n(·) so that only a few are required for each
n. If only a few modes are important, then a modal expansion is a good choice. If only a few
subdivisions are required for each element, then interpolation functions might be a better
choice.

Let P q
n(·) be the surface pressure due the array when the n-th element has the velocity

distribution φq
n(·) and all the other elements have a velocity of zero. By linearity,

Pn(·) =
M∑

q=1

V q
nP

q
n(·). (2.15.5)

Substituting equation (2.15.5) into equation (2.15.3), we obtain

P (·) =
N∑

n=1

M∑
q=1

V q
nP

q
n(·). (2.15.6)

Let F r
m to be the force component defined by

F r
m ≡

∫
Sm

P (ξ)φr
m(ξ) dS(ξ), (2.15.7)

where Sm is the radiating surface of the m-th element. Force components such as this are
what is needed in order to couple to structural models such as finite element models. It
follows from equation (2.15.6), that

F r
m =

N∑
n=1

M∑
q=1

V q
n

∫
Sm

P q
n(ξ)φr

m(ξ) dS(ξ). (2.15.8)
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If we define
zqr

mn ≡
∫

Sm

P q
n(ξ)φr

m(ξ) dS(ξ), (2.15.9)

then equation (2.15.8) can be written

F r
m =

N∑
n=1

M∑
q=1

zqr
mnV

q
n . (2.15.10)

If we define

�Vn =

⎛
⎜⎜⎜⎝
V 1

n

V 2
n
...

V M
n

⎞
⎟⎟⎟⎠ �Fm =

⎛
⎜⎜⎜⎝
F 1

m

F 2
m
...

FM
m

⎞
⎟⎟⎟⎠ (2.15.11)

and

Zmn =

⎛
⎜⎝
z11

mn . . . z1M
mn

...
...

zM1
mn . . . zMM

mn

⎞
⎟⎠ , (2.15.12)

then equation (2.15.10) can be written in the matrix form

�Fm =
N∑

n=1

Zmn
�Vn. (2.15.13)

Equation (2.15.13) is the required generalization of equation (2.15.1). In place of Fm we
have the M-vector �Fm; in place of Vn we have the M-vector �Vn; and in place of zmn we have
the M ×M matrix Zmn. It can be shown that Zmn = Znm.

The surface pressure distribution P q
n can be computed numerically using a boundary element

method such as CHIEF by placing a velocity distribution φq
n on the n-th element and zero

velocity on the other elements. Once P q
n is obtained, the mutual impedances can be obtained

by evaluating the integrals in equation (2.15.9) using numerical quadrature.

We have expressed the acoustic interactions as a linear relation between forces and velocities.
We could just as well have used accelerations or displacements in place of velocities since they
only differ by factors of iω. In the time domain the choice between velocity, acceleration or
displacement is more critical since they are not as simply related. Physically, acceleration is
more closely related to the generation of acoustic pressures than are velocity or displacement.
Recall that acoustic pressures are due to compression of the fluid medium. When a radiating
surface moves it is possible for the fluid to flow away without compression. The compression
of the fluid is due in large part to the inertia of the fluid. If the radiator accelerates fast
enough, the fluid does not have a chance to flow away and therefore compresses. For this
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reason acceleration is usually the quantity of choice when working in the time domain. The
analog of equation (2.15.13) in terms of accelerations An is

�Fm =
N∑

n=1

Mmn
�An, (2.15.14)

where
Mmn =

1
iω
Zmn and An = iωVn. (2.15.15)

Taking the inverse Fourier transform of equation (2.15.14), we get

�fm(t) =
N∑

n=1

∫ t

0
µmn(τ)an(t− τ) dτ, (2.15.16)

where
µmn(τ) =

∫ ∞

−∞
Mmn(ω)eiωτ df. (2.15.17)

In obtaining this relation we have used the fact that the Fourier transform of a convolution
is the product of the Fourier transforms. We have also assumed that all of the element
accelerations an are zero for all times t less than zero. The matrix function µmn is called the
mutual acceleration impulse response function. It can be seen from equation (2.15.16) that
the force components on the m-th element depend on the past histories of the acceleration
components on the other elements. This is because it takes a finite time for sound to travel
from one element to another. Figure (2.14) is typical of the behavior that might be expected
for a component of the matrix µmn of impulse responses. These functions usually have a peak
at the time corresponding to the time required for sound to travel between the elements.
The width of the peak is approximately equal to the time required for sound to travel across
the pair of elements.

2.16 Pritchard Approximation

A widely used approximation for mutual radiation impedances was introduced by R.L.
Pritchard in a 1960 paper [R.L. Pritchard, Mutual Acoustic Impedance between Radiators
in an Infinite Plane, J. Acoust.Soc. Am.,32, no. 6, pp. 730–737 (1960)]. In this paper
he derived an expression for the mutual radiation impedances between circular pistons in
a plane infinite rigid baffle. His general expression was quite complicated involving infinite
series and Bessel functions. For low frequencies and large separations, he derived an approx-
imation to his general result which he wrote in a form that allowed generalization to other
types of radiators. His approximation can be written in the form

zmn = iReal(z11)
e−ikdmn

kdmn

, (2.16.1)
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Figure 2.14. Typical mutual acceleration impulse response function

where dmn is the center-to-center separation between the m-th and n-th pistons and z11 is
the self radiation impedance (assumed to be the same for all elements). This approximation
can also be used for problems where the mutual interaction impedance is a matrix as in
equation (2.15.13). The generalized form of the approximation is

Zmn = i
e−ikdmn

kdmn

Real(Z11), (2.16.2)

where dmn is now the distance between some reference points associated with each element.
This approximation seems to be pretty good at low frequencies even for small separations.
Its main drawback is that it doesn’t fall off fast enough at higher frequencies. The probable
reason for this behavior is that the Pritchard approximation does not include the directivity
of the element which is more important at higher frequencies.

2.17 Nearest Neighbor Approximation

The Pritchard approximation computes the mutual impedances from the self impedance. The
approximation to be described in this section computes the mutual impedances in terms
of a single mutual impedance between an element and its nearest neighbor. Additional
information is contained in the reference [ G.W. Benthien and D. Barach, Five Element
Array Study]. In the time domain this approximation amounts to a time shift to account
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for the difference in travel time and a scalar multiplier to account for the difference in 1/r
spreading, i.e.,

µmn(t) .=
d12

dmn

µ12

(
t− dmn − d12

c

)
. (2.17.1)

In the frequency domain this translates to

zmn(ω) .=
d12

dmn

e−ik(dmn−d12)z12(ω). (2.17.2)

This approximation seems to agree with the actual mutual interactions over a much larger
frequency range than the Pritchard approximation. Figure 2.15 shows a comparison between
the Pritchard approximation and a calculation using the boundary element method CHIEF
for the interaction of the primary mode between elements 1 and 3 in a line array of Hydroa-
coustic transducers. In both cases the result was first computed in the frequency domain
and then transformed to the time domain. Figure 2.16 shows the same comparison with the
Pritchard approximation replaced by the nearest neighbor approximation. It can be seen
that the nearest neighbor approximation shows much better agreement.

Figure 2.17 shows a comparison between CHIEF and the Pritchard approximation in the
frequency domain. Notice that the Pritchard approximation agrees well at low frequencies,
but falls off too slowly at higher frequencies. Figure 2.18 shows the same comparison for the
nearest neighbor approximation. Notice that its agreement is quite good at all frequencies.
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Figure 2.15. Pritchard approximation versus CHIEF in the time domain
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Figure 2.16. Nearest neighbor approximation versus CHIEF in the time domain
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Figure 2.17. Pritchard approximation versus CHIEF in the frequency domain
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Figure 2.18. Nearest neighbor approximation versus CHIEF in the frequency domain
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2.18 T-matrix Approach to Array Interactions

T-matrix methods were first introduced in acoustics to solve scattering problems [Water-
man, P., New Formulation of Acoustic Scattering, J. Acoust. Soc. Am., 45(6), 1417–1429
(1969)]. The T-matrix relates coefficients in a spherical harmonic expansion of the inci-
dent pressure to the coefficients in a spherical harmonic expansion of the scattered pressure.
Several authors have extended the T-matrix method to handle multiple scatterers. See, for
example, [Peterson, B. and Ström, S., Matrix formulation of acoustic scattering from an ar-
bitrary number of scatterers, J. Acoust. Soc. Am., 56(3), 771–780 (1974)] and [Varadan, V.
V. and Varadan, V. K., Configurations with finite numbers of scatterers—A self-consistent
T-matrix approach, J. Acoust. Soc. Am., 70(1), 213–217 (1981)]. Others have extended
the T-matrix approach to array interaction problems. See, for example, [Scandrett, C. and
Baker, S., T-matrix approach to array modeling, Naval Postgraduate School Technical Re-
port, NPS-UW-98-001 (1998)], [Blottman III, J. and Kalinowski, A., Coupled-field Finite El-
ement/Spherical Harmonic Analysis for Close-Packed Arrays, presented at the International
Congress on Acoustics 2001], and [Scandrett, C. and Baker, S., Pritchard’s Approximation
in Array Modeling, Naval Postgraduate School Technical Report, NPS-UW-99-001 (1999)].

To illustrate some of the concepts involved in applying T-matrix methods to array interaction
problems, we will consider here the simple problem of an array of spherical sources as shown
in Figure 2.19. For more complicated cases you can refer to the references in this section.
Each of the spheres has radius a. We will denote the j-th sphere by Sj and the center of the
j-th sphere by xj. If we are only interested in surface pressures and velocities, it will not
be necessary to actually construct the T-matrix. We will, however, make use of spherical
harmonic expansions and the spherical harmonic addition theorem as is done in T-matrix
methods. The approach taken here follows generally that of the paper [Scandrett, C. L. and
Canright, D. R., Acoustic interactions in arrays of spherical elastic shells, J. Acoust. Soc.
Am., 90(1), 589–595 (1991)]. However, the notation is more like that used by Varadan in
the paper cited above.

x1 x2 xM

a a a

S1 S2 SM

Figure 2.19. An array of spherical radiators.
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It follows from the Helmholtz integral formula that

p(x) =
M∑

k=1

∫
Sk

[
p(σ)

∂G(x, σ)
∂nσ

− ∂p(σ)
∂nσ

G(x, σ)
]
dS(σ)

=
M∑

k=1

pk(x) x exterior to the array (2.18.1)

where

pk(x) =
∫

Sk

[
p(σ)

∂G(x, σ)
∂nσ

− ∂p(σ)
∂nσ

G(x, σ)
]
dS(σ). (2.18.2)

Here G(x, σ) is the free-space Green’s function. The term pk(x) is defined and satisfies the
acoustic wave equation everywhere exterior to Sk. It also satisfies the outgoing radiation
condition at infinity. However, we don’t know what boundary conditions to apply to each of
the terms pk; therefore, we must apply the boundary conditions to the total pressure p.

We will expand each of the terms pk in terms of spherical harmonics. We will use a notation
similar to that used by Varadan [Varadan, V. V. and Varadan, V. K., Configurations with
finite numbers of scatterers—A self-consistent T-matrix approach, J. Acoust. Soc. Am.,
70(1), 213–217 (1981)]. Define the spherical harmonic function ψmnp(x) by

ψnmp(x) = ξnmh
(2)
n (kr)Ynmp(θ, φ) 0 ≤ n < ∞, 0 ≤ m ≤ n, σ = 1, 2 (2.18.3)

where

Ynmp = Pm
n (cos θ)

{
cosmφ σ = 1
sinmφ σ = 2

(2.18.4)

and

ξnm =
(
εm
4π

(2n+ 1)(n−m)!
(n+m)!

)1/2

ε0 = 1, εm = 2 for m > 0. (2.18.5)

Here r, θ, and φ are the spherical coordinates of the point x relative to a global origin,
h

(2)
n is the spherical Hankel function of the second kind, and Pm

n is the associated Legendre
polynomial.

To simplify the notation we will use a single index “n” to represent the triple index “nmp”.
Thus, we will write ψn(x) for ψnmp(x). In some cases it will be necessary to separate the
radial and angular portions of ψn(x). It can be seen from equation (2.18.3) that ψn(x) can
be written as

ψn(x) = ψ̂n(|x|)ψ̃n(x/|x|) (2.18.6)

where ψ̂n depends only on the radial coordinate and ψ̃n depends only on the angular coor-
dinates. The way that the spherical harmonics have been defined, the function ψ̂n(|x|) is
complex and the function ψ̃n(x/|x|) is real.

2-47



Since ψn(x) is defined in terms of the spherical coordinates of x relative to the global origin,
we can obtain a spherical harmonic expansion relative to the center xj by using the functions
ψn(x− xj). Thus, pj(x) has the spherical harmonic expansion

pj(x) =
∑

n

ajnψn(x− xj) (2.18.7)

about xj. Equation (2.18.7) involves an infinite sum over n. However, for numerical purposes,
we will truncate this sum at some appropriately high n. This will also be done for all of the
spherical harmonic expansions that follow.

Consider now pk(x), k �= j for a point x near the sphere Sj. We can expand pk in terms of
spherical harmonics about xk as follows

pk(x) =
∑

n

aknψn(x− xk). (2.18.8)

We would like to write pk in terms of spherical harmonics about xj. To do this we employ
the spherical harmonic addition theorem. The details of the addition theorem are somewhat
complicated, so we will use the simplified notation employed by Varadan [Varadan, V. V.
and Varadan, V. K., Configurations with finite numbers of scatterers—A self-consistent
T-matrix approach, J. Acoust. Soc. Am., 70(1), 213–217 (1981)].

ψn(x− d) =

{∑
mRnm(−d)ψm(x) |x| > |d|∑
m Snm(−d) Realψm(x) |x| < |d|. (2.18.9)

The coefficients Rnm and Snm involve spherical harmonic functions as well as the Wigner 3-j
symbols.

For x near Sj we have

x− xk = (x− xj) − (xk − xj) and |x− xj| < |xk − xj|, (2.18.10)

Therefore, we can use the addition theorem to write

ψn(x− xk) =
∑
m

Snm(xj − xk) Realψm(x− xj). (2.18.11)

Substituting equation (2.18.11) into equation (2.18.8), we obtain
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pk(x) =
∑

n

akn

∑
n

Snm(xj − xk) Realψm(x− xj)

=
∑
m

akm

∑
n

Smn(xj − xk) Realψ(x− xj)

=
∑

n

Realψn(x− xj)
∑
m

akmSmn(xj − xk). (2.18.12)

In obtaining this expression we have interchanged m and n since they are merely summation
indices over the same range.

If in equation (2.18.1) we replace pj(x) by the expression in equation (2.18.7) and pk(x)
(k �= j) by the expression in equation (2.18.12), we obtain

p(x) =
∑

n

{
ajnψn(x− xj) + Realψn(x− xj)

M∑
k=1
k �=j

∑
m

akmSmn(xj − xk)
}
. (2.18.13)

To satisfy the boundary condition we need evaluate the normal derivative of p on the surface
Sj. Since the normal is in the radial direction, it is only necessary to differentiate the radial
part ψ̂n of each ψn in equation (2.18.13). Therefore,

∂p(σ)
∂nσ

=
∑

n

{
ajnψ̂

′
n(a) + Real ψ̂

′
n(a)

M∑
k=1
k �=j

∑
m

akmSmn(xj − xk)
}
ψ̃n

(
σ − xj

a

)

for σ on Sj. (2.18.14)

where the primes denote differentiation. The normal derivative of p on Sj is related to the
normal velocity vj on Sj through the equation of motion, i.e.,

∂p(σ)
∂nσ

= −iωρvj(σ) for σ on Sj (2.18.15)

We now expand vj in terms of the angular spherical harmonics as follows

vj(σ) =
∑

n

vjnψ̃n

(
σ − xj

a

)
. (2.18.16)
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Combining equations (2.18.14)–(2.18.16), we get

− iωρ
∑

n

vjnψ̃n

(
σ − xj

a

)
=
∑

n

{
ajnψ̂

′
n(a)+

Real ψ̂
′
n(a)

M∑
k=1
k �=j

∑
m

akmSmn(xj − xk)
}
ψ̃n

(
σ − xj

a

)
. (2.18.17)

Since the angular spherical harmonics are orthogonal over the sphere Sj, we can equate
coefficients on the two sides of equation (2.18.17) to obtain

−iωρvjn = ajnψ̂
′
n(a) + Real ψ̂

′
n(a)

M∑
k=1
k �=j

∑
m

akmSmn(xj − xk). (2.18.18)

There is an equation like this for each j, j = 1, . . . ,M .

Equation (2.18.18) is a set of linear equations relating the coefficient vjn to the coefficients
ajn. We can write this system of equations in matrix form as follows

v = Ba. (2.18.19)

where v is a vector of the coefficients vjn and a is a vector of the coefficients ajn. If the
velocities are given, this system of equations can be solved for the coefficients ajn. The
pressure in the field can then be computed using the expansions (2.18.7) and the summation
relation (2.18.1).

Letting the point x in equation (2.18.13) approach a point σ on Sj, we get

p(σ) =
∑

n

{
ajnψ̂n(a) + Real ψ̂n(a)

M∑
k=1
k �=j

∑
m

akmSmn(xj − xk)
}
ψ̃n

(
σ − xj

a

)

for σ on Sj. (2.18.20)

The surface pressure p on Sj can be expanded in terms of angular spherical harmonics as
follows

p(σ) =
∑

n

pjnψ̃n

(
σ − xj

a

)
. (2.18.21)

It follows from equations (2.18.20) and (2.18.21) and the orthogonality of the angular spher-
ical harmonics that

pjn = ajnψ̂n(a) + Real ψ̂n(a)
M∑

k=1
k �=j

∑
m

akmSmn(xj − xk). (2.18.22)
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This equation can be written in the matrix form

p = Ha (2.18.23)

where p is a vector of the coefficients pjn and a is a vector of the coefficients ajn. If the element
velocities were not given, it would be necessary to use the transducer element equations
to obtain an additional relation involving p and v. This additional relation could then be
combined with equations (2.18.23) and (2.18.19) to obtain a system of equations to be solved
for the coefficients ajn.

2.19 Velocity Control of Arrays

In the early 1960’s a large closely-packed planar array of longitudinal vibrators was installed
in the bow of a research submarine (the BAYA) as part of the LORAD program. Each
element had its own amplifier so that the array could be steered both horizontally and
vertically. When the array was first operated, a large number of the amplifiers failed due
to overheating. In the design of this array it had been assumed that the velocities of the
array elements would track the input drive voltages to the elements. A computer model of
the array constructed after the array failure showed that this was not the case. In fact, near
resonance, the velocity distribution across the array was so erratic that many of the elements
were taking in power instead of radiating it. The erratic velocity distribution was a result of
the strong acoustic coupling between array elements and to the sensitivity of the transducers
near resonance. In this section we will briefly describe the cure that was implemented for
this array. A more complete description can be found in the paper [Carson, D.L., Diagnosis
and Cure of Erratic Velocity Distributions in Sonar Projector Arrays, J. Acoust. Soc. Am.,
34(9), pp. 1191–1196, September 1962].

For simplicity, we will consider an array of piston radiators in which the motion of each
radiating face can be described by a single normal velocity and the acoustic loading on each
radiating face can be represented by a single force. The radiation forces are related to the
normal velocities by mutual radiation impedances, i.e.,

Fm =
N∑

n=1

zmnVn. (2.19.1)

We will assume that the transducer elements are all identical and that each element can be
described by the pair of equations

Em = αFm + βVm (2.19.2)
Im = γFm + δVm, (2.19.3)
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where Em is the drive voltage for the m-th element, Im is the drive current for the m-th
element, Fm is the acoustic force on the m-th element, and Vm is the normal velocity of the
radiating piston surface of the m-th element. Let us assume that the drive voltage is the
quantity under our control. Combining equations (2.19.1) and (2.19.2), we obtain

Em = α

N∑
n=1

zmnVn + βVm (2.19.4)

= (αzmm + β)Vm + α
∑
n�=m

zmnVn (2.19.5)

= α[(zmm + β/α)Vm +
∑
n�=m

zmnVn]. (2.19.6)

The quantity β/α will be denoted by Zsc since it represents the mechanical impedance looking
back into the element when the electrical terminals are shorted. Thus, equation (2.19.6) can
be written

Em = α[(zmm + Zsc)Vm +
∑
n�=m

zmnVn]. (2.19.7)

Equation (2.19.7) represents a system of N simultaneous linear equations that could be
solved for the velocities. If the magnitude of Zsc is large compared to the magnitudes of the
mutual impedances, then the velocity Vm will be approximately proportional to the input
voltage Em. Unfortunately, Zsc is usually small near the transducer resonance. Suppose a
series tuner ZT is added as shown in Figure 2.20. The equations for the tuned transducer

Transducer

ZT

E

I V

F

Tuner

Figure 2.20. Transducer with series tuner

have the same form as those for the untuned transducer if α is replaced by α + γZT and β
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is replaced by β + δZT . In particular

Zsc =
β + δZT

α+ γZT

. (2.19.8)

The tuner is chosen so as to maximize the magnitude of Zsc at some frequency in the band
of interest. If there are no losses, then the magnitude of Zsc can be made infinite at one
frequency. The short circuit impedance will remain large over some frequency band. In
this band we will have velocity control. This velocity control scheme is not affected by a
parallel tuning element, so a parallel tuner can be used for further impedance matching. It
turns out that a series inductor can be used to tune a piezoelectric device for maximum Zsc

and a series capacitor can be used for a magnetic device. Similar results can be obtained
for a current drive with a parallel tuner. This approach for velocity control was successful
for the LORAD array. A similar problem arose recently in connection with a segmented
flexural shell transducer. In this case the segments of a single transducer interacted with
each other to produce an anomalous response. The solution of this problem was similar to
that used in the LORAD array and is described in the paper [Benthien, G., Gillette, D.,
and Barach, D., Control of segment interactions in flexural shell transducers, presented at
the Third Joint Meeting of the Acoustical Society of America and the Acoustical Society of
Japan, Honolulu, December 1996]. It can be seen from equation (2.19.7) that it is the sum
Zsc+zmm of the short circuit mechanical impedance Zsc and the self radiation impedance zmm

that is important in obtaining velocity control by this method. If the array spacing is large
or the element radiating faces are sufficiently large in wavelengths, then the magnitude of the
self radiation impedance will dominate the magnitude of the mutual radiation impedances
and there will be no need to make Zsc large for velocity control. On the other hand, it
is possible in some cases for the reactive parts of Zsc and zmm to cancel; thus making the
velocity control problem worse.

2.20 Use of Virtual Resistors in Arrays

With multimode transducers (e.g. flexural shell transducers) it is not clear how to generalize
the tuning approach to velocity control described previously. In some cases the inclusion of a
virtual resistor has been effective in reducing the erratic behavior due to acoustic interactions.
A virtual resistor has the damping effect of a real resistor, but does not have the power loss.
A feedback loop in the amplifier in effect produces the voltage and current that would be
present if there were a real resistor. Figure 2.21 illustrates one feedback scheme for producing
a virtual resistor. The current transformer senses the current I and produces a voltage E1

proportional to this current, i.e.,
E1 = σI. (2.20.1)
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Figure 2.21. Feedback circuit for virtual resistor

The resistors R1 and R2 act like a voltage divider, i.e.,

E2 =
R2E1

R1 +R2
. (2.20.2)

In this equation we have assumed that there is negligible current in the feedback path. The
amplifier has a gain A, i.e.,

E3 = A(Ein − E2). (2.20.3)

In addition

E3 = I(R0 + Z). (2.20.4)

and

Eout = IZ. (2.20.5)

Combining equations (2.20.1)–(2.20.5), we obtain

Eout

Ein

=
AZ

R0 + Z + σR2A/(R1 +R2)
. (2.20.6)

Consider now the simple circuit shown in Figure 2.22. In this circuit we have

Eout

Ein

=
AZ

R0 + Z +Rs

. (2.20.7)
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Ein

EoutE3
Z

IRS

Figure 2.22. Simple amplifier circuit

Comparing equations (2.20.6) and (2.20.7), we see that the simple circuit of figure 2.22
behaves like the feedback circuit of figure 2.21 if we set

Rs =
σAR2

R1 +R2
. (2.20.8)

Rs is the desired virtual resistor.

2.21 Acoustic Radiation Modes

Several authors have investigated the concept of acoustic radiation modes which are a com-
plete set of velocity distributions on a radiating surface that radiate power independently.
The two papers [Borgiotti, G., The power radiated by a body in an acoustic fluid and its
determination from boundary measurements, J. Acoust. Soc. Am., 88(4), pp. 1884–1893
(1990)] and [Photiadis, D., The relationship of singular value decomposition to wave-vector
filtering in sound radiation problems, J. Acoust. Soc. Am., 88(2), pp. 1152–1159 (1990)]
develop these modes by using a singular value decomposition of the operator relating the
surface normal velocity to the far-field pressure. The paper [Sarkissian, A., Acoustic ra-
diation from finite structures, J. Acoust. Soc. Am., 90(1), pp. 574–578 (1991)] develops
these modes using an eigenvalue decomposition of the real part of the surface impedance
operator. We will use this later approach in our presentation. Typically, the eigenvalues
decrease rapidly for large values of the index. Thus, only a few of the modes radiate well to
the far-field. The high order weakly radiating modes are called evanescent modes. We will
first consider the case of a sphere vibrating axisymmetrically. This problem can be solved
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using analytic solutions. Following this we will consider general radiating bodies using the
CHIEF numerical formulation.

2.21.1 Axisymmetric sphere problem

Consider a sphere of radius a that is vibrating axisymmetrically. We have seen previously
that the pressure exterior to the sphere can be expressed in the form

p(r, θ) =
∞∑

n=0

αnh
(2)
n (kr)Pn(cos θ) (2.21.1.1)

where h(2)
n (kr) is a spherical Hankel function of the second kind and Pn(cos θ) is a Legendre

polynomial in cos θ. The Legendre polynomials satisfy the orthogonality relation∫ π

0
Pm(cos θ)Pn(cos θ) sin θ dθ =

2
2n+ 1

δmn. (2.21.1.2)

If we define

en(θ) =

√
2n+ 1

2

√
1

2πa2Pn(cos θ), (2.21.1.3)

then the functions en satisfy the orthogonality relation∫
S

emen dS = δmn (2.21.1.4)

where S is the surface of the sphere of radius a. In view of equation (2.21.1.1), the pressure
can be expanded in terms of the functions en as follows

p(r, θ) =
∞∑

n=0

βnh
(2)
n (kr)en(θ) (2.21.1.5)

where

βn =
√

2πa2

√
2

2n+ 1
αn. (2.21.1.6)

It follows from the equation of motion that

∂p

∂r

(a, θ)
= k

∞∑
n=0

βnh
(2)
n

′
(ka)en(θ) (2.21.1.7)

= −iωρv(θ) (2.21.1.8)
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where v(θ) is the normal velocity on the surface S. Solving equations (2.21.1.7)–(2.21.1.8)
for v(θ), we get

v(θ) =
i

ρc

∞∑
n=0

βnh
(2)
n

′
(ka)en(θ) (2.21.1.9)

=
∞∑

n=0

vnen(θ). (2.21.1.10)

Due to the orthonormality of the functions en, it follows from equations (2.21.1.9)–(2.21.1.10)
that

vn =
i

ρc
βnh

(2)
n

′
(ka) =

∫
S

v(θ)en(θ) dS. (2.21.1.11)

Solving equation (2.21.1.11) for βn, we get

βn =
−iρcvn

h
(2)
n

′
(ka)

. (2.21.1.12)

Combining equations (2.21.1.5) and (2.21.1.12), we get

p(a, θ′) = −iρc
∞∑

n=0

vn
h

(2)
n (ka)

h
(2)
n

′
(ka)

en(θ′). (2.21.1.13)

Combining equations (2.21.1.11) and (2.21.1.13), we get

p(a, θ′) =
∫

S

v(θ)
∞∑

n=0

(−iρc) h
(2)
n (ka)

h
(2)
n

′
(ka)

en(θ)en(θ′) dS(θ) (2.21.1.14)

=
∫

S

z(θ, θ′)v(θ) dS(θ) (2.21.1.15)

where the kernel z(θ, θ′) is defined by

z(θ, θ′) = −iρc
∞∑

n=0

h
(2)
n (ka)

h
(2)
n

′
(ka)

en(θ)en(θ′). (2.21.1.16)

If we define

zn = −iρc h
(2)
n (ka)

h
(2)
n

′
(ka)

= rn + ixn, (2.21.1.17)

then z(θ, θ′) can be written

z(θ, θ′) =
∞∑

n=0

znen(θ)en(θ′) = r(θ, θ′) + ix(θ, θ′). (2.21.1.18)
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Clearly

r(θ, θ′) =
∞∑

n=0

rnen(θ)en(θ′). (2.21.1.19)

It follows from equation (2.21.1.19) and the orthogonality of the functions en that∫
S

r(θ, θ′)en(θ′) dS(θ′) = rnen(θ). (2.21.1.20)

Thus, the function en is an eigenfunction of the operator r with eigenvalue rn. The functions
en are referred to as radiation modes.

The pressure pn(θ) due to a velocity distribution en(θ′) is given by

pn(θ) =
∫

S

z(θ, θ′)en(θ′) dS(θ′) (2.21.1.21)

=
∫

S

r(θ, θ′)en(θ′) dS(θ′) + i

∫
S

x(θ, θ′)en(θ′) dS(θ′) (2.21.1.22)

= rnen(θ) + i

∫
S

x(θ, θ′)en(θ′) dS(θ′). (2.21.1.23)

The average power Pn radiated by a velocity distribution en is given by

Pn = Real
∫

S

enpn dS (2.21.1.24)

= Real
[∫

S

rne
2
n(θ) dS(θ) + i

∫
S

en(θ) dS(θ)
∫

S

x(θ, θ′)en(θ′) dS(θ′)
]

(2.21.1.25)

= rn

∫
S

e2
n(θ) dS(θ) = rn. (2.21.1.26)

Thus, the eigenvalue rn is the power radiated by the mode en. Since the kernels r and x are
symmetric in their arguments θ and θ′, it follows that the integrals∫

S

v∗(θ) dS(θ)
∫

S

r(θ, θ′)v(θ′) dS(θ′)

and∫
S

v∗(θ) dS(θ)
∫

S

x(θ, θ′)v(θ′) dS(θ′)

are real. Thus, the average power P radiated by a velocity distribution v is given by

P = Real
[∫

S

v∗p dS
]

(2.21.1.27)

= Real
[∫

S

v∗(θ) dS(θ)
∫

S

z(θ, θ′)v(θ′) dS(θ′)
]

(2.21.1.28)

=
∫

S

v∗(θ) dS(θ)
∫

S

r(θ, θ′)v(θ′) dS(θ′). (2.21.1.29)
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In view of equations (2.21.1.10) and (2.21.1.20), we have

∫
S

r(θ, θ′)v(θ′) dS(θ′) =
∞∑

n=0

vnrnen(θ). (2.21.1.30)

Combining equation (2.21.1.29) with equation (2.21.1.30) and using equation (2.21.1.11), we
obtain

P =
∞∑

n=0

vnrn

∫
S

v∗(θ)en(θ) dS(θ) (2.21.1.31)

=
∞∑

n=0

rn|vn|2. (2.21.1.32)

Thus, the modes radiate power independently. In the next section we will generalize these
power results for the sphere to more general bodies.

2.21.2 General problem

Consider now a general body with radiating surface S. If we discretize S and use the CHIEF
method, we obtain the surface radiation impedance relation

F = ZV (2.21.2.1)

where F is a column vector whose n-th component is the pressure on the n-th subdivision
times the area of the n-th subdivision, V is a column vector whose n-th component is the
normal velocity of the n-th subdivision, and Z is a symmetric N ×N complex matrix whose
real and imaginary parts are the symmetric matrices R and X. Let E be a real matrix whose
columns are the eigenvectors of R, i.e.,

RE = EΛ , Λ = diag(λ1, . . . , λN). (2.21.2.2)

The values λ1, . . . , λN) are the eigenvalues of R. If En is the n-th column of E, then the
force vector Fn corresponding to the velocity distribution En is given by

Fn = ZEn. (2.21.2.3)

The average power Pn corresponding to the velocity distribution En is given by

Pn = Real(ET
nFn) = Real(ET

nZEn) (2.21.2.4)

= Real(ET
nREn + iET

nXEn) (2.21.2.5)

= ET
nREn = λnE

T
nEn = λn. (2.21.2.6)
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The velocity V can be expanded in terms of the eigenmodes of R as follows

V = EV̂ (2.21.2.7)

where the components of V̂ are the coefficients in this expansion. The average power P can
now be expressed as

P = Real(V †ZV ) (2.21.2.8)

= V †RV = V̂ †ETREV̂ (2.21.2.9)

= V̂ †ΛV̂ =
N∑

n=0

λn|V̂n|2. (2.21.2.10)

Thus, the modes En radiate power independently. As before, we will refer to the column
vectors En as radiation modes.

We will now show some calculated axisymmetric radiation modes for a circular cylinder with
a length-to-diameter ratio of 2 and scaled frequency (kL) values of 0.1, 0.5, 1.0, 2.0, and
5.0. The cylinder was divided into 20 subdivisions that were numbered as shown in figure
2.23. Figure 2.24 shows the logarithm of the eigenvalues of the radiation resistance matrix
plotted versus mode index number. The eigenvalues were sorted from largest to smallest.
Notice that the eigenvalues decrease very rapidly after a certain point and then level off at
a noise floor. Recall that the eigenvalues relate to the radiation efficiency of the modes.
As frequency increases there are more modes that have a significant radiation efficiency
(eigenvalue). Figures 2.25–2.28 show the first four eigenmodes corresponding to the various
frequencies. Notice that the eigenmodes do not change very much with frequency.

axis1

2

3

4

5 6 7 8 9 10 11 12 13 14 15 16

17

18

19

20

Figure 2.23. Subdivision numbering for cylinder modeled using CHIEF
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Figure 2.24. Eigenvalues of the radiation resistance matrix
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Figure 2.25. First eigenmode of the radiation resistance matrix at various frequencies
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Figure 2.26. Second eigenmode of the radiation resistance matrix at various frequencies
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Figure 2.27. Third eigenmode of the radiation resistance matrix at various frequencies
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Figure 2.28. Fourth eigenmode of the radiation resistance matrix at various frequencies
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Chapter 3

Structural Modeling

This chapter covers the modeling of the structural components of a transducer. This includes
the modeling of active components such as piezoelectric or magnetostrictive materials as well
as the modeling of purely elastic components. Two classes of models will be discussed. The
first class consists of variational based models. The most important representative of this
class is the finite element method. The finite element methodology was first developed for
elastic structures such as airplane wings and building frames, but it is now recognized that
it can be applied to all types of physical problems. Variational methods can also be used
to develop simple “lumped parameter” models of transducer components. The second class
consists of one-dimensional wave type models. These models are sometimes referred to as
“plane wave” models. In many cases these models result in simple analytic expressions
for the electrical and mechanical behavior of the components being modeled. Elaborate
computer programs have been developed for the interconnection of one-dimensional wave
models for various transducer components. One of the earliest of these programs was given
the acronym SEADUCER and is described in the reference[Ding, H.H., McCleary, L.E.,
and Ward, J.A., Computerized Sonar Transducer Analysis and Design Based on Multiport
Network Interconnection Techniques, NUC Technical Paper 228, April 1973]. It is also
possible to intermix one-dimensional wave models of some components with finite element
models of other components in the modeling of a transducer.

3.1 Variational Methods

Variational methods form the basis of many of the numerical methods and approximation
schemes used in transducer design and analysis. For example, the finite element method
used in structural analysis is based on a variational method. The purpose here is not to give
an exhaustive treatment of variational methods, but to present enough of the basics so that
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the user will understand what is being computed in the variational based numerical methods
and will be able to develop simple approximations based on variational principles.

The first topic covered is the conversion between a differential equation formulation of a
physical problem and a variational formulation. This is illustrated for a simple boundary-
value problem of potential theory. Two basic approaches to variational type problems will
be discussed, both of which lead to the same result. The first approach involves constructing
a functional defined on a certain class of functions that is stationary at the solution we
are seeking, i.e., the first variation of the functional is zero when evaluated at the solution.
For the simple potential problem being considered the functional is actually minimized by
the solution, but in most problems we can only say that the functional is stationary at the
solution. The classical Rayleigh-Ritz method is based on this direct variational approach.
The second approach can be thought of as a projection method and is sometimes called
the method of weighted residuals. The Galerkin method is an example of this approach.
An analogy from ordinary geometry might help to illustrate the two approaches. Consider
the problem of finding the point on a plane that is closest to a fixed point not lying on
the plane. One approach to solving this problem would be to form the expression for the
distance between the fixed point and a general point on the plane, and then to minimize
this function using differential calculus. A second approach would be to find the projection
of the fixed point onto the plane. Both approaches lead to the same solution.

The second subsection covers some numerical procedures based on variational formulations.
In particular finite element type approximations will be discussed. The simple potential
problem described in the previous section will be used as an illustration. The third subsec-
tion describes the extension of the previous results to steady state dynamic problems. A
simple problem from acoustics will be used as an illustration. In later sections these same
procedures are used to derive the basic finite element equations for elastic structures, piezo-
electric devices, and magnetostrictive devices. The final subsection covers the application
of variational methods to the development of simplified models. Simple equivalent circuits
as well as simple formulas for resonance frequencies can be obtained from variational princi-
ples. A number of examples will be given. I hope to show that variational principals are an
excellent starting point for the development of simplified models.

3.1.1 Example Problem

In order to gain some insight into the variational approach we will begin with a simple
one-dimensional problem from elastostatics. The problem is to calculate the field inside a
spherical capacitor as shown in figure 3.1. It will be assumed that the charge is specified on
the outer electrode and that the potential is specified on the inner electrode. It will also be
assumed that the electrodes have negligible thickness.
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Figure 3.1. A spherical capacitor

The electric field �E, the electric displacement �D, and the potential φ satisfy the following
equations of elastostatics:

div �D = ρe (3.1.1.1)
�D = ε �E (3.1.1.2)
�E = −∇φ. (3.1.1.3)

Here ρe is the free charge density. In our problem ρe is zero except on the electrodes. Let
S be the outer surface of the dielectric (r = b), and let S+ be a spherical surface inside the
outer electrode containing all the charge in its interior. Integrating equation (3.1.1.1) over
the region between S and S+ and using the divergence theorem gives∫

S

�D · �n+
∫

S+

�D · �n = Q (3.1.1.4)

where Q is the total charge on the outer electrode. We assume that the electrodes are
perfect conductors so that both �E and �D are zero inside the electrodes. Therefore, the
second integral in equation (3.1.1.4) vanishes and we have∫

S

�D · �n = Q. (3.1.1.5)

By symmetry, �D · �n is constant over S. Thus, equation (3.1.1.5) can be written

4πb2Dr(b) = Q. (3.1.1.6)

In view of equations (3.1.1.2)–(3.1.1.3), we can write equation (3.1.1.6) as

−4πb2ε
dφ

dr
(b) = Q (3.1.1.7)
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or
b2
dφ

dr
(b) = γ (3.1.1.8)

where
γ = − Q

4πε
. (3.1.1.9)

On the inner surface (r = a), the potential φ is constant and has the specified value ζ, i.e.,

φ(a) = ζ. (3.1.1.10)

In the dielectric region φ satisfies Laplace’s equation. In spherical coordinates Laplace’s
equation can be written

1
r2

d

dr

(
r2dφ

dr

)
= 0 a < r < b. (3.1.1.11)

The problem consists of solving the differential equation (3.1.1.11) for φ subject to the
boundary conditions (3.1.1.8) and (3.1.1.10).

This problem can be solved analytically. The solution has the form

φ(r) = α+ β
1
r
. (3.1.1.12)

The constants are obtained by applying the boundary conditions in equations (3.1.1.8) and
(3.1.1.10). The result is

φ(r) = ζ + γ
(1
a

− 1
r

)
. (3.1.1.13)

Later, when we develop numerical approximations based on variational principles, we will
compare the results obtained using those approximations with those obtained using this
analytical solution.

In order to formulate a variational principle that is equivalent to the boundary-value problem
defined by equations (3.1.1.8)–(3.1.1.11) we define a functional F by

F (ψ) = 1
2

∫ b

a

r2
(dψ
dr

)2
dr − γψ(b) (3.1.1.14)

where ψ is any smooth function on the interval (a, b) that satisfies the inner boundary con-
dition ψ(a) = ζ. A functional is like an ordinary function except its argument is a function
instead of a number. We will show that of all functions satisfying the potential bound-
ary condition at r = a, the solution φ of the boundary-value problem (3.1.1.8)–(3.1.1.11)
minimizes the functional F . Suppose h is a smooth function satisfying the homogeneous
boundary condition h(a) = 0. Then

F (φ+ h) = F (φ) +
∫ b

a

r2dφ

dr

dh

dr
dr + 1

2

∫ b

a

r2
(dh
dr

)2
dr − γh(b). (3.1.1.15)
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Integrating by parts, we have∫ b

a

r2dφ

dr

dh

dr
dr = b2

dφ

dr
(b)h(b) −

∫ b

a

h
1
r2

d

dr

(
r2dφ

dr

)
r2 dr. (3.1.1.16)

Since φ satisfies Laplace’s equation, the preceding equation becomes∫ b

a

r2dφ

dr

dh

dr
dr = b2

dφ

dr
(b)h(b). (3.1.1.17)

Substituting equation (3.1.1.17) into equation (3.1.1.15), we obtain

F (φ+ h) = F (φ) + h(b)
[
b2
dφ

dr
(b) − γ

]
+ 1

2

∫ b

a

r2
(
dh

dr

)2

dr. (3.1.1.18)

Since φ satisfies the boundary condition (3.1.1.8), this relation becomes

F (φ+ h) = F (φ) + 1
2

∫ b

a

r2
(
dh

dr

)2

dr ≥ F (φ). (3.1.1.19)

Since any function ψ satisfying ψ(a) = ζ can be written as ψ = φ + h with h(a) = 0, it
follows from equation (3.1.1.19) that φ minimizes the functional F over all such functions ψ.

We now define the variation δhF of F by

δhF (ψ) = lim
λ→0

F (ψ + λh) − F (ψ)
λ

. (3.1.1.20)

The variation of a functional is analogous to a directional derivative of an ordinary function.
It follows from equation (3.1.1.14) that the variation of F is given by

δhF (ψ) =
∫ b

a

r2dψ

dr

dh

dr
dr − γh(b). (3.1.1.21)

Combining equations (3.1.1.16) and (3.1.1.21), we get

δhF (ψ) = h(b)
[
b2
dψ

dr
(b) − γ

]
−
∫ b

a

h
1
r2

d

dr

(
r2dψ

dr

)
r2 dr. (3.1.1.22)

If φ is the solution of the boundary-value problem given by equations (3.1.1.8)–(3.1.1.11),
then it follows that

δhF (φ) = 0 (3.1.1.23)

for all h satisfying h(a) = 0. This condition is analogous to the derivative of a smooth
function being zero at a minimum.
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Conversely, suppose δhF (φ) = 0 for all h satisfying h(a) = 0. Then, it follows from equation
(3.1.1.22) that

h(b)
[
b2
dψ

dr
(b) − γ

]
−
∫ b

a

h
1
r2

d

dr

(
r2dψ

dr

)
r2 dr = 0 (3.1.1.24)

for all h such that h(a) = 0. It follows from equation (3.1.1.24) that∫ b

a

h
1
r2

d

dr

(
r2dψ

dr

)
r2 dr = 0 (3.1.1.25)

for all h that satisfy both h(a) = 0 and h(b) = 0. If we define G by

G(r) =
d

dr

(
r2dφ

dr

)
, (3.1.1.26)

then equation (3.1.1.25) can be written∫ b

a

h(r)G(r) dr = 0 (3.1.1.27)

for all h satisfying h(a) = h(b) = 0. We will show that G is identically zero on the interval
(a,b) by assuming that it is not true and deriving a contradiction. Assume that G is nonzero
for some point r̄ in the interval (a, b). Let us suppose for definiteness that

G(r̄) > 0. (3.1.1.28)

By continuity, there is some δ > 0 such that

G(r) > 0 on the interval (r̄ − δ, r̄ + δ). (3.1.1.29)

Let us define a function ĥ by

ĥ =

{
e

− 1
(r−r̄)2−δ2 , for r̄ − δ < r < r̄ + δ

0, otherwise.
(3.1.1.30)

The function ĥ is infinitely differentiable and vanishes at both r = a and r = b. It follows
from equation (3.1.1.27) that∫ b

a

ĥ(r)G(r) dr =
∫ r̄+δ

r̄−δ

ĥ(r)G(r) dr = 0. (3.1.1.31)

This is a contradiction since ĥ and G are strictly positive on the interval (r̄ − δ, r̄ + δ).
Therefore, the function G must vanish on the interval (a, b), i.e.,

G(r) =
d

dr

(
r2dφ

dr

)
= 0 for a < r < b. (3.1.1.32)
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In other words φ satisfies Laplace’s equation on the interval (a, b). It follows now from
equation (3.1.1.24) that

h(b)
[
b2
dψ

dr
(b) − γ

]
= 0 (3.1.1.33)

for all h such that h(a) = 0. Therefore,

b2
dφ

dr
(b) = γ (3.1.1.34)

, i.e., φ satisfies the boundary condition in equation (3.1.1.8). If, in addition, φ satisfies
φ(a) = ζ, then φ is a solution of the boundary-value problem given in equations (3.1.1.8)–
(3.1.1.11). Notice that the derivative boundary condition in equation (3.1.1.8) follows from
the variational equation (3.1.1.23), but that the boundary condition φ(a) = ζ must be
enforced separately. The derivative boundary condition in equation (3.1.1.8) is called a
natural boundary condition.

It follows from equation (3.1.1.21) that the condition δhF (φ) = 0 is equivalent to the relation∫ b

a

r2dφ

dr

dh

dr
dr − γh(b) = 0 for all h such that h(a) = 0. (3.1.1.35)

We will now show that this relation could have been arrived at by a different procedure.
Let h be an arbitrary smooth function such that h(a) = 0. Then it follows from Laplace’s
equation [equation (3.1.1.11)] that∫ b

a

h
d

dr

(
r2dφ

dr

)
dr = 0 a < r < b. (3.1.1.36)

Integrating equation (3.1.1.36) by parts, we get

hr2dφ

dr

∣∣∣∣
b

a

−
∫ b

a

r2dφ

dr

dh

dr
dr = 0. (3.1.1.37)

Combining the boundary conditions φ(a) = ζ and b2 dφ
dr

(b) = γ with equation (3.1.1.37),
we obtain equation (3.1.1.35). This approach is usually called Galerkin’s method. It has
the advantage that it is not necessary to construct an appropriate functional for the prob-
lem. Equation (3.1.1.35) will be the starting point for the numerical approximations to be
discussed in the next section.

3.1.2 Variational Based Numerical Methods

In this section we continue with the simple potential problem described in the previous section
as we consider variational based numerical approximations. The starting point will be the
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integral relation of equation (3.1.1.35) which we obtained both by a variational argument
and by Galerkin’s method. This relation states that∫ b

a

r2dφ

dr

dh

dr
dr − γh(b) = 0 for all h such that h(a) = 0. (3.1.2.1)

We will consider approximations to φ of the form

φ(r) = φa(r) +
N∑

n=1

φnχn(r) (3.1.2.2)

where φa(r) is a function satisfying φa(a) = ζ and χ1(r), . . . , χN(r) are prescribed functions
satisfying χn(a) = 0 for all n. One possibility for the function φa(r) is the constant function
defined by φa(r) ≡ ζ. The functions χn could be powers of r − a or trigonometric functions
such as sin[nπ(r − a)/(b − a)]. The class of methods known as finite element methods are
based on piecewise polynomial approximation. Let us consider the simplest approximation
of this type, namely piecewise-linear approximation. To construct this approximation we
divide the interval (a, b) into a finite number of subdivisions by choosing distinct points
r0 = a, r1, . . . , rN = b in the interval. In finite element terminology the points rn are called
nodes and the intervals between adjacent nodes are called elements. It can be shown that
any piecewise linear function on (a, b) can be expressed as a linear combination of piecewise
linear functions χ0, . . . , χN having the property

χn(r) =

{
1 r = rn

0 r = rm, m �= n.
(3.1.2.3)

One such function is shown in figure 3.2. For obvious reasons the functions χn are sometimes

n n+1n-1
0

1

Figure 3.2. Piecewise-linear interpolation function

called hat functions. At the ends of the interval only one half of the hat function is used.
We approximate φ by

φ(r) = ζχ0(r) +
N∑

n=1

φnχn(r) (3.1.2.4)
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where we have taken φa = ζχ0(r). Because the hat functions χn have the local property of
equation (3.1.2.3), it follows that φn is the value of the approximation to φ at rn.

In addition to approximating φ as in equation(3.1.2.2) we also restrict the class of functions
h for which equation (3.1.2.1) is required to hold. Corresponding to the piecewise-linear
approximation, we require equation (3.1.2.1) to hold for all piecewise-linear functions h such
that h(a) = 0. Since any piecewise-linear function h satisfying h(a) = 0 can be written as a
linear combination of χ1, . . . , χN , it is sufficient to require∫ b

a

r2dφ

dr

dχm

dr
dr − γχm(b) = 0 for m = 1, . . . , N. (3.1.2.5)

Substituting equation (3.1.2.2) into equation (3.1.2.5), we get

∫ b

a

r2
(
dφa

dr
+

N∑
n=1

φn
dχn

dr

)
dχm

dr
dr − γχm(b) = 0 (3.1.2.6)

or

N∑
n=1

φn

∫ b

a

r2dχm

dr

dχn

dr
dr = γχm(b)

−
∫ b

a

r2dχm

dr

dφa

dr
dr m=1,. . . ,N. (3.1.2.7)

This equation can be written in the matrix form

KΦ = F (3.1.2.8)

where Φ is a column vector whose n-th component is φn, K is a matrix with components

Kmn =
∫ b

a

r2dχm

dr

dχn

dr
dr, (3.1.2.9)

and F is a column vector whose m-th component is given by

Fm = γχm(b) −
∫ b

a

r2dχm

dr

dφa

dr
dr. (3.1.2.10)

In finite element terminology the matrix K is called the stiffness matrix and the vector F is
called the load vector.

Figure 3.3 shows a comparison of the finite element solution with the analytic solution for
the case where a = 1, b = 5, ζ = 0, γ = 1, and N = 20. Notice that the agreement is quite
good. The maximum error over the interval is 1.1%. Of course the error gets smaller with
more subdivisions.
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Figure 3.3. Potential distribution in a spherical capacitor with inner radius 1.0 and outer radius
5.0

3.1.3 Example Dynamic Problem

The example problem we have been considering is a static problem. Let us now consider a
simple steady-state dynamic problem. Many of the details will be omitted since they are
almost identical to those of the potential problem considered previously. Suppose we have
the same region between the spherical surfaces r = a and r = b that now contains a fluid
such as water. Suppose also that the surface r = a is vibrating sinusoidally at the angular
frequency ω with a uniform normal acceleration v̇ and that the acoustic pressure p is zero
on the inner surface r = a. This problem leads to the boundary-value problem

1
r2

d

dr

(
r2dp

dr

)
+ k2p = 0 a < r < b (3.1.3.1)

p(a) = 0 (3.1.3.2)
dp

dr
(b) = −ρv̇ (3.1.3.3)

for the acoustic pressure p. Here ρ is the fluid density, k = ω/c is the acoustic wavenumber,
and c is the sound velocity in the fluid. Notice that this boundary-value problem is very
similar to the potential boundary-value problem considered previously. The major difference
is the addition of the term k2p to the Laplacian in equation (3.1.3.1). It can be shown that
the solution of this problem is given by

p(r) =
1
r
(α cos kr + β sin kr) (3.1.3.4)
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where

α =
ρb2v̇ sin ka

kb cos k(b− a) − sin k(b− a)
(3.1.3.5)

β =
−ρb2v̇ cos ka

kb cos k(b− a) − sin k(b− a)
. (3.1.3.6)

This problem can be converted to a variational problem in the same manner as for the
potential problem considered previously. The appropriate functional for this problem is

F (p) = 1
2

∫ b

a

r2
(
dp

dr

)2

dr − 1
2k

2
∫ b

a

r2p2 dr + ρb2v̇p(b). (3.1.3.7)

This functional is defined on the class of smooth functions p satisfying the inner boundary
condition p(a) = 0. In this case the functional F is not minimized by the solution of the
boundary-value problem, but it can be shown that the variation of F is zero at the solution,
i.e.,

δhF (p) = 0 for all h such that h(a) = 0. (3.1.3.8)

This leads to the integral relation

∫ b

a

r2dp

dr

dh

dr
dr − k2

∫ b

a

r2ph dr + ρb2v̇h(b) = 0

for all h such that h(a) = 0. (3.1.3.9)

This relation could also have been arrived at by Galerkin’s method. As before, applying
piecewise linear approximation to this problem leads to the finite element equation

(−ω2M +K)P = F (3.1.3.10)

where P is a column vector with n-th component pn, F is a column vector with components

Fm = −ρb2v̇χm(b), (3.1.3.11)

and M and K are matrices with components

Mmn =
1
c2

∫ b

a

r2χmχn dr (3.1.3.12)

Kmn =
∫ b

a

r2dχm

dr

dχn

dr
dr. (3.1.3.13)

The functions χm are the piecewise linear hat functions described previously. In finite element
terminology M is called the mass matrix, K is called the stiffness matrix, and F is called
the load vector. It can be shown that the mass matrix M is positive definite, i.e., all its
eigenvalues are positive. The matrix K is positive semidefinite, i.e., its eigenvalues are
positive or zero.
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3.1.4 Nodes vs. elements

So far we have taken a nodal point-of-view in the development of finite element approx-
imations. As the name “finite element method” suggests, the element concept plays an
important part in the implementation of these approximations. How are the element view-
point and the nodal view-point related? The equation and variable numbering is clearly
based on nodes. The computation of the finite element matrices, however, is usually per-
formed on an element basis. Because of the local nature of the interpolation functions (e.g.,
the “hat” functions) used in finite element methods, the integrand corresponding to the
m,n-th matrix component is nonzero only on those elements containing both the m-th and
the n-th nodes. Thus, the m,n-th component can be written as a sum of integrals over those
elements containing both the m-th and n-th nodes. In the simple one=dimensional scalar
problems we have been considering, only the diagonal matrix terms involve more than a
one element sum. However, in multidimensional problems, other matrix entries can involve
sums of integrals over several elements. The integrals are usually first computed over each
element for those nodes contained in the element. In this way an element matrix is con-
structed. The entries of the element matrix can then be added into appropriate positions
in the global matrix to complete the process. This later process is called matrix assembly.
Once the finite element matrices are assembled, then the matrix equations can be solved for
the unknown nodal variables. Special methods are employed in the solution process since
the finite element matrices are very sparse (again due to the local nature of the interpolation
functions). One of the most common solution procedures used in finite element programs is
the frontal method. This method actually combines the solution and assembly procedures.
In the common solution procedures (those based on Gaussian elimination), a multiple of one
equation is added to other equations so as to zero out the entries below the diagonal in the
column corresponding to the equation being used. In this manner the original system of
equations is reduced to a triangular system that can be easily solved by back substitution.
In the frontal method the element matrices corresponding to different elements are sequen-
tially brought into memory and the appropriate entries of the global matrix formed. At each
stage some of the global matrix elements will be complete and others will be only partially
complete. As soon as all the entries corresponding to some node are complete, multiples
of the equation corresponding to this node are added to equations corresponding to nodes
contained in other elements in memory as in the normal solution procedure. Some of the
matrix components modified by this procedure are not yet complete. However, since both
the solution procedure and the assembly procedure merely add quantities to these matrix
components, the order in which this is done is not important. Those elements that are not
complete will be completed at a later stage. Once all the equations corresponding to the
nodes of an element are completed, this element can be removed from consideration. Thus,
at any stage of the frontal method, usually only a few elements are being worked on in the
computer. The efficiency and storage involved in the frontal method is dependent on the
order in which the elements are introduced and not on the nodal numbering. It is obviously
desirable to have only a few elements involved at any one time.
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3.2 Interpolation Schemes

An important part of the finite element approximation technique is the selection of a set of
independent interpolation functions φ1(x), φ2(x), . . . , φN(x) such that an unknown function
u can be represented by a sum of the form

u(x) =
N∑

n=1

unφn(x). (3.2.1)

Such a set of interpolation functions is called a basis for the interpolation scheme. We
have already mentioned the “hat” functions corresponding to piecewise linear interpolation.
Usually, the basis of interpolation functions has the property that the n-th interpolation takes
on the value 1 at the n-th node and takes on the value 0 at all the other nodes. Because of
this local property, the only interpolation functions that are nonzero on a particular element
are those corresponding to nodes contained in the element. Clearly, the global interpolation
functions can be determined if we know their behavior on each element.

Consider a one-dimensional line element with endpoints xn and xn+1 (xn+1 > xn). For
piecewise linear interpolation, the two basis functions that are nonzero on this element are

φn(x) =
x− xn+1

xn − xn+1
φn+1(x) =

x− xn

xn+1 − xn

. (3.2.2)

Since element sizes may vary, it is common to define the interpolation functions on the
standard interval [-1,1]. The two basis functions for this interval are

φ̂1(ξ) = 1
2(1 − ξ) φ̂2(ξ) = 1

2(1 + ξ). (3.2.3)

The basis functions on this normalized interval are related to the real basis functions by

φn(x) = φ̂1

(
x− 1

2(xn + xn+1)
1
2(xn+1 − xn)

)
(3.2.4)

φn+1(x) = φ̂2

(
x− 1

2(xn + xn+1)
1
2(xn+1 − xn)

)
. (3.2.5)

If we wanted to expand our unknowns in terms of piecewise quadratic functions, we would
add a center node to the element as shown in figure 3.4. The following three functions would

1 2 3

Figure 3.4. One-dimensional quadratic element
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serve as normalized basis functions for this type of interpolation

φ̂1(ξ) = 1
2ξ(ξ − 1) φ̂2(ξ) = 1 = ξ2 φ̂3(ξ) = 1

2ξ(ξ + 1). (3.2.6)

The basis functions for any element can be obtained by the same translation and scaling
used for the linear elements, i.e.,

ξ =
x− 1

2(xn + xn+1)
1
2(xn+1 − xn)

. (3.2.7)

The two-dimensional analog of the piecewise linear one-dimensional element is the bilinear
element shown in figure 3.5.

1

4

2

3

ξ

η

ξ = −1 ξ = +1

η = +1

η = −1

Figure 3.5. Two-dimensional bilinear element

The normalized basis functions for this element are

φ̂1(ξ, η) = 1
4(ξ − 1)(η − 1) φ̂2(ξ, η) = 1

4(ξ + 1)(1 − η) (3.2.8)

φ̂3(ξ, η) = 1
4(ξ + 1)(η + 1) φ̂4(ξ, η) = 1

4(1 − ξ)(η + 1). (3.2.9)

The variables ξ and η can be mapped to a rectangular region corresponding to the element
by applying a one-dimensional translation and scaling to each coordinate separately. A
two-dimensional quadratic element is shown in figure 3.6.

This element is called a serendipity element. The normalized basis functions for this element
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Figure 3.6. A two dimensional quadratic element

are

φ̂1(ξ, η) = 1
4ξη(ξ − 1)(η − 1) φ̂2(ξ, η) = 1

4ξη(ξ + 1)(η − 1) (3.2.10)

φ̂3(ξ, η) = 1
4ξη(ξ + 1)(η + 1) φ̂4(ξ, η) = 1

4ξη(ξ − 1)(η + 1) (3.2.11)

φ̂5(ξ, η) = 1
2η(ξ

2 − 1)(1 − η) φ̂6(ξ, η) = 1
2ξ(ξ + 1)(1 − η2) (3.2.12)

φ̂7(ξ, η) = 1
2η(1 − ξ2)(η + 1) φ̂8(ξ, η) = 1

2ξ(η
2 − 1)(1 − ξ). (3.2.13)

The serendipity element is quadratic, but it is not complete in the sense that there are
quadratic functions on this region that can not be represented in terms of the eight φ̂ func-
tions. The element can be made complete by adding a ninth node in the center as shown
in figure 3.7. This element is called a Lagrange element. The normalized basis functions for

1 5 2

6

7 34

8
9

Figure 3.7. A complete two-dimensional quadratic element
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this element are the basis functions for the serendipity element plus the ninth basis function

φ̂9(ξ, η) = (1 − ξ2)(1 − η2). (3.2.14)

Three-dimensional elements can be defined in a similar manner. There is an eight node
linear element, a twenty node serendipity type quadratic element, and a 27 node Lagrange
type quadratic element.

So far we have considered elements that are line intervals or planar rectangles. To handle
more complex regions we can use the finite element basis functions to approximate the
geometry. If �x1, . . . , �xN are nodes in an element, then the mapping

�x(ξ, η) =
N∑

n=1

�xnφ̂n(ξ, η) (3.2.15)

is an approximate representation of the geometry in the vicinity of the nodes. An example
of this type of mapping is shown in figure 3.8.

1 2

34

5

6

7

8

Mapping

1

4

8

5 2

6

7 3

ξ

η

ξ = −1 ξ = +1

η = +1

η = −1

Figure 3.8. Geometry defined using finite element interpolation functions

An element in which both the geometry and the unknown functions are approximated using
the same interpolation functions is called an isoparametric element.

3.3 Structural Finite Elements

In this section we will develop the basic finite element equations for an elastic continuum.
The interior forces in an elastic continuum are described in terms of a vector area density
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function �t called the stress vector. Given a point x in the body, a surface containing x, and
a vector �n normal to the surface at x, the stress vector �t(x) is the force per unit area of the
positive side of the surface on the negative side. The positive side is the side into which the
normal �n points. The stress tensor T is a linear transformation having the property

�t = T�n. (3.3.1)

The basic equation of motion can be written in terms of the stress tensor as follows

div T = ρ
∂2�u

∂t2
in V (3.3.2)

where ρ is the mass density, �u is the displacement vector, and V is the volume occupied by
the elastic material.

The strain tensor S is defined to be the symmetric part of the displacement gradient, i.e.,

S = ∇̂�u ≡ 1
2(∇�u+ ∇�uT ). (3.3.3)

The stress tensor and the strain tensor are related through the constitutive equation

T = C(S) (3.3.4)

where C is a linear function.

Let �ψ1, . . . , �ψN be a basis of linearly independent vector interpolation functions on V. In the
finite element method these basis functions are piecewise polynomial functions each of which
is nonzero at one node and zero at all the other nodes. The displacement �u is approximated
by

�u(x) =
N∑

n=1

Un
�ψn(x). (3.3.5)

In this approximation the displacement is completely determined by the values U1, . . . , UN .
Substituting equation (3.3.5) into equation (3.3.3), we get

S(x) =
N∑

n=1

Un∇̂�ψn(x). (3.3.6)

Thus, the constitutive relation of equation (3.3.4) becomes

T =
N∑

n=1

UnC(∇̂�ψn) (3.3.7)

Following Galerkin’s method, we take the dot product of equation (3.3.2) with each of the
interpolation functions �ψn and integrate over the volume V to obtain∫

V

div T · �ψm =
∫

V

ρ
∂2�u

∂t2
· �ψm m = 1, . . . , N. (3.3.8)
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We have the following product rule for differentiation

div(T �ψm) = div T · �ψm + T · ∇�ψm

= div T · �ψm + T · ∇̂�ψm. (3.3.9)

The last equality in (3.3.9) follows from the fact that T is symmetric and hence that

T · ∇�ψm = T · ∇�ψ T
m. (3.3.10)

Combining equations (3.3.8)–(3.3.9) and making use of the divergence theorem, we get∫
V

div T · �ψm =
∫

V

div(T �ψm) −
∫

V

T · ∇̂�ψm

=
∫

∂V

T �ψm · �n−
∫

V

T · ∇̂�ψm

=
∫

∂V

�ψm · T�n−
∫

V

T · ∇̂�ψm

=
∫

∂V

�t · �ψm −
∫

V

T · ∇̂�ψm

=
∫

V

ρ
∂2�u

∂t2
· �ψm

or ∫
V

ρ
∂2�u

∂t2
· �ψm +

∫
V

T · ∇̂�ψm =
∫

∂V

�t · �ψm m = 1, . . . , N (3.3.11)

where we used the fact that �t = T�n.

Substituting equations (3.3.5) and (3.3.7) into equation (3.3.11), we get

N∑
n=1

Ün

∫
V

ρ�ψm · �ψn +
N∑

n=1

Un

∫
V

CE(∇̂�ψn) · ∇̂�ψm

=
∫

∂V

�t · �ψm m = 1, . . . , N. (3.3.12)

Equation (3.3.12) can be written in the matrix form

MÜ +KU = F (3.3.13)

where U is a column vector with n-th component Un. The matrices M and K have compo-
nents given by

Mmn =
∫

V

ρ�ψm · �ψn (3.3.14)

Kmn =
∫

V

CE(∇̂�ψn) · ∇̂�ψm. (3.3.15)
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F is a column vector with components

Fm =
∫

∂V

�t · �ψm. (3.3.16)

In finite element terminology M is called the mass matrix, K is called the stiffness matrix,
and F is called the load vector. In the frequency domain equation (3.3.13) becomes

(−ω2M +K)U = F. (3.3.17)

The frequencies ωn for which the homogeneous equation

(−ω2M +K)U = 0 (3.3.18)

has a nonzero solution are called eigenfrequencies. The corresponding nonzero solutions are
called eigenmodes. Clearly, if U is an eigenmode, then any scalar multiple of U is also an
eigenmode. It can be shown that the eigenmodes corresponding to distinct eigenfrequencies
are orthogonal relative to the mass matrix, i.e.,

UT
mMUn = 0 for m �= n. (3.3.19)

Therefore, there exists a matrix E, whose columns are eigenmodes, such that

ETME = I and ETKE = Ω (3.3.20)

where Ω is the diagonal matrix diag(ω2
1, . . . , ω

2
N) of the squares of the eigenfrequencies.

Multiplying equation (3.3.17) by ET and defining Û by EÛ = U , we obtain

(−ω2I + Ω)Û = F̂ (3.3.21)

where F̂ = ETF . Thus, the finite element equations become uncoupled when expressed in
terms of the eigenmodes. Solving equation (3.3.21) for U , we obtain

U = E(−ω2I + Ω)−1ETF. (3.3.22)

The inverse in this equation is easy to compute since the matrix is diagonal. Thus, equation
(3.3.22) represents an efficient computational form for calculating the solution at a large
number of frequencies.

3.4 Fluid Finite Elements

Consider a region V containing a perfect fluid. The acoustic pressure p in V satisfies the
Helmholtz wave equation

�p+ k2p = 0 (3.4.1)

3-19



where k = ω/c is the acoustic wave number. Let χ1, . . . , χN be a basis of interpolation
functions for p over V. Then p can be approximated by

p(x) =
∑

n

Pnχn(x). (3.4.2)

Following the Galerkin procedure, we multiply equation (3.4.1) by χm and integrate over V

to obtain ∫
V

χm�p+ k2
∫

V

χmp = 0 m = 1, . . . , N. (3.4.3)

We have the following product rule for differentiation

div(χm∇p) = χm�p+ ∇χm · ∇p. (3.4.4)

Substituting equation (3.4.4) into equation (3.4.3), we get∫
V

div(χm∇p) −
∫

V

∇χm · ∇p+ k2
∫

V

χmp = 0. (3.4.5)

Application of the divergence theorem to equation (3.4.5) produces

−ω
2

c2

∫
V

χmp+
∫

V

∇χm · ∇p =
∫

∂V

χm
∂p

∂n
(3.4.6)

where ∂V is the boundary of V. Substitution of equation (3.4.2) into equation (3.4.6) gives
the system of equations

− ω2

c2

∑
n

Pn

∫
V

χmχn +
∑

n

Pn

∫
V

∇χm · ∇χn =

∫
∂V

χm
∂p

∂n
m = 1, . . . , N. (3.4.7)

This system of equations can be written in the matrix form

(−ω2M f +Kf )P = F f (3.4.8)

where

M f
mn =

1
c2

∫
V

χmχn (3.4.9)

Kf
mn =

∫
V

∇χm · ∇χn (3.4.10)

F f
m =

∫
∂V

χm
∂p

∂n
. (3.4.11)
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Suppose that the region V shares a boundary surface S with an elastic structure. The force
vector F f can be decomposed into two parts as follows

F f = F s + F o (3.4.12)

where
F s

m =
∫

S

χm
∂p

∂n
F o

m

∫
So

χm
∂p

∂n
(3.4.13)

and So is the portion of V outside of S. It follows from the equation of motion for the fluid
that

∂p

∂n
= ω2ρ�u · �n (3.4.14)

where �u is the particle displacement, ρ is the fluid density, and �n is the outward unit normal
to S. The displacement u within the structure can be approximated in terms of the vector
interpolation functions �ψr as follows

�u =
∑

r

Ur
�ψr. (3.4.15)

Combining equations (3.4.14) and (3.4.15), we get

∂p

∂n
= ω2ρ

∑
r

Ur
�ψr · �n. (3.4.16)

Thus, F s
m becomes

F s
m =

∫
S

χm
∂p

∂n
= ω2ρ

∑
r

Ur

∫
S

χm
�ψr · �n. (3.4.17)

This equation can be written in the matrix form

F s = ω2ρLTU (3.4.18)

where U is the column vector of structural displacement degrees of freedom and L is the
matrix defined by

Lrm =
∫

S

χm
�ψr · �n. (3.4.19)

Combining equations (3.4.8), (3.4.12), (3.4.13), and (3.4.18), we get

(−ω2M f +Kf )P − ω2ρLTU = F o. (3.4.20)

The finite element equations for the structure can be written in the matrix form

(−ω2M +K)U = F rad + F d (3.4.21)
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where F rad is the load vector corresponding to the acoustic loading and F d is the load vector
corresponding to other structural forces. The load vector F rad has the components

F rad
m =

∫
S

�t · �ψm (3.4.22)

where �t is the stress vector. The stress vector is related to the pressure by

�t = −p�n. (3.4.23)

Thus,

F rad
m = −

∫
S

p�ψm · �n. (3.4.24)

Combining equations (3.4.2) and (3.4.24), we obtain

F rad
m = −

∑
n

Pn

∫
S

χn
�ψm · �n. (3.4.25)

Equation (3.4.25) can be written in the matrix form

F rad = −LP. (3.4.26)

Combining this equation with the structural finite element equation (3.4.21), we get

(−ω2M +K)U + LP = F d. (3.4.27)

If we divide equation (3.4.20) by −ω2ρ, then we have the pair of equations

(−ω2M +K)U + LP = F d (3.4.28)

LTU − 1
ω2ρ

(−ω2M f +Kf )P = − 1
ω2ρ

F o (3.4.29)

describing the interaction of fluid and structure. These equations can be combined into the
large matrix equation[−ω2M +K L

LT − 1
ω2ρ

(−ω2M f +Kf )

](
U
P

)
=
(

F d

− 1
ω2ρ

F o

)
(3.4.30)

We divided through by −ω2ρ in order to make the final matrix symmetric. If it was desired to
transform the equations into the time domain, then it would be better to write the equations
in the form (

−ω2
[
M 0
ρLT M f

]
+
[
K L
0 Kf

])(
U
P

)
=
(
F d

F o

)
. (3.4.31)

In this form the matrices are not symmetric.

Many finite element programs use interface elements to construct the coupling matrix L.
The unknown load vector F o can be eliminated using some kind of radiation condition or by
attaching an infinite fluid element.
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3.5 Piezoelectric Finite Elements

Many finite element packages now contain elements for piezoelectric ceramic materials. In
this paper I will develop the basic finite element equations for these materials. It will be
assumed that the materials are linear, homogeneous and have sufficiently high dielectric
constant so that fringing of the electric field can be neglected. The basic approach employed
will be the Galerkin method. The Galerkin method is a projection method that in most
cases is equivalent to the Rayleigh-Ritz variational procedure. Figure 3.9 shows a piece of
piezoelectric material with its associated foil electrodes. It will be assumed that the foils are

Piezoelectr ic
Mater ial Foi l  Electrodes

Figure 3.9. Piezoelectric material with electrodes

perfect conductors and have negligible thickness.

3.5.1 Mechanical Equations

The interior forces in an elastic continuum are described in terms of a vector area density
function �t called the stress vector. Given a point x in the body, a surface containing x, and
a vector �n normal to the surface at x, the stress vector �t(x) is the force per unit area of the
positive side of the surface on the negative side. The positive side is the side into which the
normal �n points. The stress tensor T is a linear transformation having the property

�t = T�n. (3.5.1.1)

The basic equation of motion can be written in terms of the stress tensor as follows

div T = ρ
∂2�u

∂t2
in V (3.5.1.2)

where ρ is the mass density, �u is the displacement vector, and V is the volume occupied by
the piezoelectric material.

The strain tensor S is defined to be the symmetric part of the displacement gradient, i.e.,

S = ∇̂�u ≡ 1
2(∇�u+ ∇�uT ). (3.5.1.3)
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The stress tensor and the strain tensor are related through the constitutive equations to be
described later.

3.5.2 Electrical Equations

The electric field �E and the magnetic induction �B are related by Maxwell’s equation

curl �E = −∂
�B

∂t
. (3.5.2.1)

In this paper we will make the quasistatic assumption that magnetic effects are negligible,
i.e., ∂ �B/∂t = 0. It follows that

curl �E = 0. (3.5.2.2)

Equation (3.5.2.2) implies the existence of a scalar potential φ such that

�E = −∇φ. (3.5.2.3)

The electric displacement vector �D satisfies Maxwell’s equation

div �D = ρe (3.5.2.4)

where ρe is the free charge density.

3.5.3 Constitutive Equations

The linear constitutive equations for a piezoelectric material have the form

T = CE(S) − e†( �E) (3.5.3.1)
�D = e(S) + εS( �E) (3.5.3.2)

where CE, e, and εS are linear functions and e† is the transpose of e. The transpose is defined
by the property

e(S) · �E = S · e†( �E) for all S and E. (3.5.3.3)

3.5.4 Interpolation Functions

Let �ψ1, . . . , �ψN be a basis of linearly independent vector interpolation functions on V. In the
finite element method these basis functions are piecewise polynomial functions each of which
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is nonzero at one node and zero at all the other nodes. The displacement �u is approximated
by

�u(x) =
N∑

n=1

Un
�ψn(x). (3.5.4.1)

In this approximation the displacement is completely determined by the values U1, . . . , UN .

Let χ1, . . . , χM be a basis of scalar interpolation functions. The electric potential φ is ap-
proximated by

φ(x) =
M∑

n=1

φnχn(x). (3.5.4.2)

In this approximation the potential φ is completely determined by the values φ1, . . . , φM .

Combining equations (3.5.1.3) and (3.5.4.1), we get

S(x) =
N∑

n=1

Un∇̂�ψn(x). (3.5.4.3)

Combining equations (3.5.2.3) and (3.5.4.2), we get

�E(x) = −
M∑

n=1

φn∇χn(x). (3.5.4.4)

Substituting equations (3.5.4.3)–(3.5.4.4) into the constitutive equations (3.5.3.1)–(3.5.3.2),
we get

T =
N∑

n=1

UnC
E(∇̂�ψn) +

M∑
n=1

φne
†(∇χn) (3.5.4.5)

�D =
N∑

n=1

Une(∇̂�ψn) −
M∑

n=1

φnε
S(∇χn). (3.5.4.6)

3.5.5 Finite Element Equations

Taking the dot product of equation (3.5.1.2) with each of the interpolation functions �ψn and
integrating over V, we obtain∫

V

div T · �ψm =
∫

V

ρ
∂2�u

∂t2
· �ψm m = 1, . . . , N. (3.5.5.1)
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We have the following product rule for differentiation

div(T �ψm) = div T · �ψm + T · ∇�ψm

= div T · �ψm + T · ∇̂�ψm. (3.5.5.2)

The last equality in (3.5.5.2) follows from the fact that T is symmetric and hence that

T · ∇�ψm = T · ∇�ψT
m. (3.5.5.3)

Combining equations (3.5.5.1)–(3.5.5.2) and making use of the divergence theorem, we get∫
V

div T · �ψm =
∫

V

div(T �ψm) −
∫

V

T · ∇̂�ψm

=
∫

∂V

T �ψm · �n−
∫

V

T · ∇̂�ψm

=
∫

∂V

�ψm · T�n−
∫

V

T · ∇̂�ψm

=
∫

∂V

�t · �ψm −
∫

V

T · ∇̂�ψm

=
∫

V

ρ
∂2�u

∂t2
· �ψm

or ∫
V

ρ
∂2�u

∂t2
· �ψm +

∫
V

T · ∇̂�ψm =
∫

∂V

�t · �ψm m = 1, . . . , N (3.5.5.4)

where we used the fact that �t = T�n. Substituting equations (3.5.4.1) and (3.5.4.5) into
equation (3.5.5.4), we get

N∑
n=1

Ün

∫
V

ρ�ψm · �ψn +
N∑

n=1

Un

∫
V

CE(∇̂�ψn) · ∇̂�ψm

+
M∑

n=1

φn

∫
V

e†(∇χn) · ∇̂�ψm =
∫

∂V

�t · �ψm m = 1, . . . , N. (3.5.5.5)

Equation (3.5.5.5) can be written in the matrix form

MÜ +KU +KcΦ = F (3.5.5.6)

where U is a column vector with n-th component Un and Φ is a column vector with n-th
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component φn. The matrices M , K, and Kc have components given by

Mmn =
∫

V

ρ�ψm · �ψn (3.5.5.7)

Kmn =
∫

V

CE(∇̂�ψn) · ∇̂�ψm (3.5.5.8)

Kc
mn =

∫
V

e†(∇χn) · ∇̂�ψm

=
∫

V

e(∇̂�ψm) · ∇χn. (3.5.5.9)

F is a column vector with components

Fm =
∫

∂V

�t · �ψm. (3.5.5.10)

Referring to figure 3.9, we will assume that the volume V extends slightly into the foils. Since
the electric field and electric displacement are zero inside a perfect conductor, it follows that
�D · �n = 0 on the portion of the boundary of V that lies in the foils. Since we are also
assuming that there is no fringing of the electric field, it follows that �D · �n = 0 on the entire
boundary ∂V of V. Multiplying equation (3.5.2.4) by each of the interpolation functions χm

and integrating over V, we get∫
V

χm div �D =
∫

V

ρeχm m = 1, . . . ,M. (3.5.5.11)

We have the following product rule for differentiation

div(χm
�D) = χm div �D + ∇χm · �D. (3.5.5.12)

Combining equations (3.5.5.11)–(3.5.5.12) and making use of the divergence theorem, we get

∫
V

χm div �D =
∫

V

div(χm
�D) −

∫
V

∇χm · �D

=
∫

∂V

χm
�D · �n−

∫
V

∇χm · �D

=
∫

V

ρeχm.

Since �D · �n = 0 on ∂V, it follows that

−
∫

V

∇χm · �D =
∫

V

ρeχm m = 1, . . . ,M. (3.5.5.13)
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Substituting equation (3.5.4.6) into equation (3.5.5.13), yields

N∑
n=1

Un

∫
V

∇χm · e(∇̂�ψn) −
M∑

n=1

φn

∫
V

∇χm · εS(∇χn)

= −
∫

V

ρeχm m = 1, . . . ,M. (3.5.5.14)

Equation (3.5.5.14) can be written in the matrix form

(Kc)TU +KeΦ = Q (3.5.5.15)

where Ke is the matrix with components

Ke
mn = −

∫
V

∇χm · εS(∇χn) (3.5.5.16)

and Q is a column vector with components

Qm = −
∫

V

ρeχm. (3.5.5.17)

Equations (3.5.5.6) and (3.5.5.15) can be combined to give(
M 0
0 0

)(
Ü

Φ̈

)
+
(

K Kc

(Kc)T Ke

)(
U
Φ

)
=
(
F
Q

)
. (3.5.5.18)

Equation (3.5.5.18) is the basic finite element equation for piezoelectric materials. The usual
finite element interpolation functions χm have the property

χm(xn) =

{
0 m �= n

1 m = n
(3.5.5.19)

where the xn’s are the nodes in the model. Since the free charge is concentrated on the foils,
it follows from equation (3.5.5.17) that Qm = 0 when xm does not lie on one of the foils.
Furthermore, the sum of the Qm over all the nodes on a single foil is the charge on that foil.
Since the foils are perfect conductors, the potentials φn are the same for all nodes on a single
foil, and this constant value is the potential on that foil.

In modeling a stack of piezoelectric ceramic slabs, it is necessary to consider that the polar-
ization is reversed on adjacent slabs. The reversal of polarization can be accomplished by
replacing e by −e in the constitutive equations (3.5.3.1) and (3.5.3.2).
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3.6 Magnetostrictive Finite Elements

Recently there has been renewed interest in magnetostrictive drivers due to the discovery
of some new rare-earth magnetostrictive materials (particularly Terfenol-D). These new ma-
terials have a coupling coefficient as high as that of piezoelectric ceramics and allow much
larger strains. The high strain capability along with a lower Young’s modulus make these
materials attractive for low frequency, high power transducers. From a modeling standpoint
these materials pose some special challenges. Since the magnetic permeability of these ma-
terials is small (only 2 to 3 times that of a vacuum), the magnetic field is not well confined
to the material, i.e., fringing can not be neglected. Thus, in a finite element model, the
magnetic domain must be larger than the elastic domain. In addition, these materials are
highly nonlinear and can only be considered linear around some dc bias.

As far as I know, the only general purpose finite element program that allows for magne-
tostrictive materials with low magnetic permeability is the ATILA program developed by
ISEN (l’Institut Supérieur d’Electronique du Nord) for the French Navy. The theory behind
the ATILA implementation is described in the doctoral thesis [F. Claeyssen, Conception et
réalisation de transducteurs sonar basse fréquence à base d’alliages magnétostrictifs Terres
rares-Fer, Thesis n. 89 ISAL 0065, INSA Lyon Fr. (1989)]. This section is largely based on
this thesis and represents my interpretation of the theoretical basis behind the method used
by ATILA to model magnetostrictive materials.

3.6.1 Magnetic Potential

Let VM denote the magnetic region where the magnetic field is considered significant, and let
VE denote the elastic region. We will assume that the magnetostrictive material is excited
by a finite number of coils where the current in the k-th coil is denoted by Ik. Figure 3.10
shows a coil surrounding a magnetostrictive bar and a magnetic return path.

Let Hs be the magnetic field generated by the coils in vacuo. Then

Hs =
∑

k

IkĤk (3.6.1.1)

where Ĥk is the in vacuo magnetic field corresponding to unit current in the k-th coil and
zero current in the remaining coils. Ĥk can be calculated using the Biot-Savart law

Ĥk =
1
4π

∫
V c

k

Ĵk × �r

r3 dV (3.6.1.2)

where �r is a vector from the integration point to the field point, r is the magnitude of �r,
V c

k is the volume occupied by the k-th coil, and Ĵk is the current density corresponding to a
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coil

Magnetostr ict ive Bar

Figure 3.10. A magnetostrictive bar surrounded by a coil with its return path

unit current in the k-th coil and zero current in the other coils. The residual magnetic field
Hr is defined by

Hr = H −Hs. (3.6.1.3)

Since bothH andHs satisfy Maxwell’s equation curlH = J , it follows from equation (3.6.1.3)
that

curlHr = 0. (3.6.1.4)

Therefore, there exists a scalar magnetic potential φ such that

Hr = −∇φ. (3.6.1.5)

It follows from equations (3.6.1.5) and (3.6.1.3) that

H = Hs − ∇φ =
∑

k

IkĤk − ∇φ. (3.6.1.6)

3.6.2 Basic Equations

The stress tensor T and the displacement u obey Cauchy’s equation of motion

div T = ρü = −ω2ρu (3.6.2.1)

in the region VE occupied by elastic materials. The magnetic induction B satisfies Maxwell’s
equation

divB = 0 (3.6.2.2)

3-30



in the magnetic region VM which includes the elastic region VE. The elastic and magnetic
fields are assumed to satisfy the linear constitutive equations

T = CH(S) − e†(H) (3.6.2.3)

B = e(S) + µS(H) (3.6.2.4)

where CH , e, and µS are linear functions; e† denotes the transpose of the function e; and S
is the strain tensor defined by

S = 1
2(∇u+ ∇uT ). (3.6.2.5)

We will use the notation ∇̂ for the symmetric part of the gradient operator ∇. Thus, the
strain is given by

S = ∇̂u. (3.6.2.6)

The constitutive equations (3.6.2.4) can also be used for non-magnetostrictive materials.
For materials that are not magnetostrictive, the coupling function e is zero. For nonelastic
magnetic materials both CH and e are zero.

3.6.3 Interpolation Functions

Let ψ1, ψ2, . . . , ψN be a set of independent vector interpolation functions on the region VE

such that the displacement u can be approximated by

u(x) .=
N∑

n=1

Unψn(x) x ∈ VE. (3.6.3.1)

In finite element models, the interpolation functions are piecewise polynomials. Using the
form of interpolation shown in equation (3.6.3.1) allows the unknown function u to be re-
placed by the N values U1, . . . , UN . We will let U denote the column vector whose n-th
component is Un. The vector U is one of the basic variables in the finite element model.

Let χ1, χ2, . . . , χM be a set of independent scalar interpolation functions such that the mag-
netic potential φ can be approximated by

φ(x) .=
M∑

r=1

φrχr(x) x ∈ VM . (3.6.3.2)

Again, we will let Φ denote the column vector whose r-th component is φr. The vector Φ
is another one of the basic variables in the finite element model. If we substitute equation
(3.6.3.2) into equation (3.6.1.6), then we obtain the following approximation for the magnetic
field H

H(x) .=
∑

k

IkĤk −
M∑

r=1

φr∇χr(x). (3.6.3.3)
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The current column vector I with k-th component Ik is another one of the basic variables in
the finite element model. Referring to equation (3.6.1.1), we see that the functions Ĥk play
the role of interpolation functions for Hs.

3.6.4 Elastic Finite Element Equations

Taking the dot product of the equation of motion (3.6.2.1) by the interpolation function ψm

and integrating over VE, we get∫
VE

ψm · div T = −ω2
∫

VE

ρψm · u for each m. (3.6.4.1)

In view of the product rule

div(Tψm) = div T · ψm + ∇̂ψm · T, (3.6.4.2)

equation (3.6.4.1) can be written∫
VE

div(Tψm) −
∫

VE

∇̂ψm · T = −ω2
∫

VE

ρψm · u for each m. (3.6.4.3)

Making use of the divergence theorem, equation (3.6.4.3) can be written

−ω2
∫

VE

ρψm · u+
∫

VE

∇̂ψm · T =
∫

∂VE

ψm · Tn for each m (3.6.4.4)

where ∂VE is the boundary surface of the region VE and n is the outward unit normal vector
to ∂VE. Substituting the constitutive equation (3.6.2.3) for T into equation (3.6.4.4), we get

− ω2
∫

VE

ρψm · u+
∫

VE

∇̂ψm · CH(∇̂u) −
∫

VE

∇̂ψm · e†(H) =∫
∂VE

ψm · Tn for each m. (3.6.4.5)

Substituting equations (3.6.3.3) and (3.6.3.1) into equation (3.6.4.5), we get

− ω2
N∑

n=1

Un

∫
VE

ρψm · ψn +
N∑

n=1

Un

∫
VE

∇̂ψm · CH(∇̂ψn)

−
∑

k

Ik

∫
VE

∇̂ψm · e†(Ĥk) +
M∑

r=1

φr

∫
VE

∇̂ψm · e†(∇χr) =

∫
∂VE

ψm · Tn for each m. (3.6.4.6)
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This equation can be written in the matrix form

(−ω2M +Kuu)U +KuφΦ +KuII = F (3.6.4.7)

where the matrices M , Kuu, Kuφ, and KuI are defined by

M =
[∫

VE

ρψm · ψn

]
(3.6.4.8)

Kuu =
[∫

VE

∇̂ψm · CH(∇̂ψn)
]

(3.6.4.9)

Kuφ =
[∫

VE

∇̂ψm · e†(∇χr)
]

(3.6.4.10)

KuI =
[∫

VE

∇̂ψm · e†(Ĥk)
]

(3.6.4.11)

and the vector F is defined by

F =
[∫

∂VE

ψm · Tn
]
. (3.6.4.12)

3.6.5 Magnetic Finite Element Equations

Multiplying equation (3.6.2.2) by the interpolation function χq and integrating over VM , we
get ∫

VE

χq divB = 0 for each q. (3.6.5.1)

In view of the product rule

div(χqB) = χq divB + ∇χq ·B, (3.6.5.2)

equation (3.6.5.1) can be written∫
VM

∇χq ·B =
∫

VM

div(χqB) =
∫

∂VM

χq(B · n) for each q. (3.6.5.3)

In the above equation we have made use of the divergence theorem. Substituting the con-
stitutive equation (3.6.2.4) for B into equation(3.6.5.3), gives∫

VM

∇χq · e(∇̂u) +
∫

VM

∇χq · µS(H) =
∫

∂VM

χq(B · n) for each q. (3.6.5.4)
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Substituting equations (3.6.3.3) and (3.6.3.1) into equation (3.6.5.4), we get

N∑
n=1

Un

∫
VE

∇χq · e(∇̂ψn) +
∑

k

Ik

∫
VM

∇χq · µS(Ĥk)

−
M∑

r=1

φr

∫
VM

∇χq · µS(∇χr) =
∫

∂VM

χqB · n for each q. (3.6.5.5)

In this equation we have used the fact that the displacement is zero outside of the elastic
region VE. Equation (3.6.5.5) can be written in the matrix form

(Kuφ)TU +KφφΦ +KφII = Q (3.6.5.6)

where

Kφφ =
[
−
∫

VM

∇χq · µS(∇χr)
]

(3.6.5.7)

KφI =
[∫

VM

∇χq · µS(Ĥk)
]

(3.6.5.8)

Q =
[∫

∂VM

χqB · n
]
. (3.6.5.9)

3.6.6 Current Finite Element Equations

Since the magnetic induction vector B satisfies divB = 0, there exists a vector potential A
such that

B = curlA. (3.6.6.1)

In view of the product rule

div(Ĥp × A) = A · curl Ĥp − Ĥp · curlA (3.6.6.2)

and the fact that Ĥp satisfies Maxwell’s equation

curl Ĥp = Ĵp, (3.6.6.3)

we have
B · Ĥp = A · Ĵp − div(Ĥp × A). (3.6.6.4)

Integrating equation (3.6.6.4) over all space and making use of the divergence theorem, we
obtain ∫

B · Ĥp =
∫
A · Ĵp − lim

r→∞

∫
Sr

Ĥp × A · r̂ (3.6.6.5)
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where Sr is a sphere of radius r and r̂ is a unit vector in the radial direction. Since Ĥp decays
like 1/r2 and A decays like 1/r, it follows that the limit in equation (3.6.6.5) is zero. Thus,∫

B · Ĥp =
∫
A · Ĵp. (3.6.6.6)

Since Ĵp is zero outside of the p-th coil, we have∫
A · Ĵp =

∑
l

∫
V

p
l

A · Ĵp (3.6.6.7)

where V
p
l is the volume of the l-th loop in the p-th coil. We will assume that A is approx-

imately constant over the cross-section of each wire loop. Since Ĵp corresponds to a unit
current in the p-th coil, equation (3.6.6.7) can be approximated by∫

A · Ĵp =
∑

l

∮
C

p
l

A · ds (3.6.6.8)

where C
p
l is the curve defining the centerline of the l-th loop in the p-th coil. By Stoke’s

theorem we have ∮
C

p
l

A · ds =
∫

Sp
l

curlA · n (3.6.6.9)

where Sp
l is the area bounded by C

p
l and n is normal to this area. Since curlA = B,

combination of equations (3.6.6.6)–(3.6.6.9) gives∫
B · Ĥp =

∑
l

∫
Sp

l

B · n ≡ qp. (3.6.6.10)

Substituting the constitutive equation (3.6.2.4) into equation (3.6.6.10), we obtain∫
VE

e(∇̂u) · Ĥp +
∫

VM

µS(H) · Ĥp = qp. (3.6.6.11)

Substituting equations (3.6.3.3) and (3.6.3.1) into equation (3.6.6.11), we get

N∑
n=1

Un

∫
VE

e(∇̂ψn) · Ĥp +
∑

k

Ik

∫
VM

µS(Ĥk) · Ĥp

+
M∑

r=1

φr

∫
VM

µS(∇χr) · Ĥp = qp. (3.6.6.12)

Equation (3.6.6.12) can be written in the matrix form

(KuI)TU +KIII + (KφI)T Φ = −q (3.6.6.13)
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where

KII =
[∫

VM

µS(Ĥk) · Ĥp

]
(3.6.6.14)

q =

[∑
l

∫
Sp

l

B · n
]

= fluxes through coils. (3.6.6.15)

3.6.7 Summary of Finite Element Equations

The finite element equations given in (3.6.4.7), (3.6.5.6), and (3.6.6.13) can be combined into
the single matrix equation⎛

⎝−ω2M +Kuu Kuφ KuI

(Kuφ)T Kφφ KφI

(KuI)T (KφI)T KII

⎞
⎠
⎛
⎝UΦ
I

⎞
⎠ =

⎛
⎝FQ
q

⎞
⎠ (3.6.7.1)

where

M =
[∫

VE

ρψm · ψn

]
(3.6.7.2)

Kuu =
[∫

VE

∇̂ψm · CH(∇̂ψn)
]

(3.6.7.3)

Kuφ =
[∫

VE

∇̂ψm · e†(∇χr)
]

(3.6.7.4)

KuI =
[∫

VE

∇̂ψm · e†(Ĥk)
]

(3.6.7.5)

KφI =
[∫

VM

∇χq · µS(Ĥk)
]

(3.6.7.6)

Kφφ =
[
−
∫

VM

∇χq · µS(∇χr)
]

(3.6.7.7)

KII =
[∫

VM

µS(Ĥk) · Ĥp

]
(3.6.7.8)
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and

F =
[∫

∂VE

ψm · Tn
]

(3.6.7.9)

Q =
[∫

∂VM

χqB · n
]

(3.6.7.10)

q =

[∑
l

∫
Sp

l

B · n
]

= fluxes through coils. (3.6.7.11)

The flux through a coil is related to the voltage on the coil. The electric field E satisfies
Maxwell’s equation

curlE = −Ḃ = −iωB. (3.6.7.12)

Integrating the normal component of equation (3.6.7.12) over the surface Sp
l bounded by the

l-th loop of the p-th coil and using Stoke’s theorem, gives∫
Sp

l

curlE · n =
∮

C
p
l

E · ds = −iω
∫

Sp
l

B · n. (3.6.7.13)

Thus, the voltage Vp on the p-th coil is given by

Vp =
∑

l

∮
C

p
l

E · ds = −iω
∑

l

∫
Sp

l

B · n = −iωqp. (3.6.7.14)

3.7 Variational Approximations

In addition to forming the basis of many computational schemes, variational methods can
also serve as a starting point for developing simple approximations. In this section we will
show how the variational methods we have discussed previously can be used to develop simple
models for transducer components and their equivalent circuit representation. The stationary
nature of variational functionals near the solution means that fairly crude approximations
for the displacement shape can produce quite accurate approximations for such quantities as
stored energy and resonance frequencies. Simple models will be developed for two example
problems. The first example problem is the longitudinal vibration of a cylindrical bar.
The second example problem is the longitudinal vibration of a stack of piezoelectric ceramic
pieces having nonuniform material properties. In both cases we will develop simple equivalent
circuits representing the models.

3.7.1 Longitudinal Vibration of a Cylindrical Bar

Consider a cylindrical elastic bar with its axis in the x-direction as shown in figure 3.11.
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Figure 3.11. An elastic bar

It will be assumed that all quantities have only an x dependence and that all vector com-
ponents not in the x-direction are zero. With these assumptions the equation of motion
becomes

T ′
xx = ρüx (3.7.1.1)

where T is the stress tensor and u is the displacement. It will be assumed that ux varies
linearly along the bar, i.e.,

u(x) = u0φ0(x) + uLφL(x) (3.7.1.2)

where φ0 and φL are linear interpolation functions defined by

φ0(x) = 1 − x/L (3.7.1.3)
φL(x) = x/L. (3.7.1.4)

Following Galerkin’s method we multiply equation (3.7.1.1) by each interpolation function
and integrate from 0 to L. This gives∫ L

0
T ′

xxφ0 dx =
∫ L

0
ρüxφ0 dx (3.7.1.5)∫ L

0
T ′

xxφL dx =
∫ L

0
ρüxφL dx. (3.7.1.6)

Integrating these equations by parts gives

Txxφ0

∣∣∣∣
L

0
−
∫ L

0
Txxφ

′
0 dx = ρ

∫ L

0
üxφ0 dx (3.7.1.7)

Txxφ0

∣∣∣∣
L

0
−
∫ L

0
Txxφ

′
0 dx = ρ

∫ L

0
üxφ0 dx (3.7.1.8)

or equivalently

ρ

∫ L

0
üxφ0 dx+

∫ L

0
Txxφ

′
0 dx = −Txx(0) (3.7.1.9)

ρ

∫ L

0
üxφL dx+

∫ L

0
Txxφ

′
L dx = Txx(L). (3.7.1.10)
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The constitutive equation for the elastic bar can be approximated by

Txx = Y u′
x (3.7.1.11)

where Y is Young’s modulus for the material. Substituting equation (3.7.1.11) into equations
(3.7.1.9)–(3.7.1.10), we obtain

ρ

∫ L

0
üxφ0 dx+ Y

∫ L

0
u′

xφ
′
0 dx = −Txx(0) (3.7.1.12)

ρ

∫ L

0
üxφL dx+ Y

∫ L

0
u′

xφ
′
L dx = Txx(L). (3.7.1.13)

Combining equation (3.7.1.2) with equations (3.7.1.12)–(3.7.1.13), we get

ρü0

∫ L

0
φ2

0 dx+ ρüL

∫ L

0
φ0φL dx

+ Y u0

∫ L

0
(φ′

0)
2 dx+ Y uL

∫ L

0
φ′

0φ
′
L dx = −Txx(0) (3.7.1.14)

ρü0

∫ L

0
φ0φL dx+ ρüL

∫ L

0
φ2

L dx

+ Y u0

∫ L

0
φ′

0φ
′
L dx+ Y uL

∫ L

0
(φ′

L)2 dx = Txx(L). (3.7.1.15)

It is easily verified that∫ L

0
φ2

0 dx =
∫ L

0
φ2

L dx =
L

3
and

∫ L

0
φ0φL dx =

L

6∫ L

0
(φ′

0)
2 dx =

∫ L

0
(φ′

L)2 dx =
1
L

and
∫ L

0
φ′

0φ
′
L dx = − 1

L
.

Using these relations, equations (3.7.1.14)–(3.7.1.15) can be written

ρL

3
ü0 +

ρL

6
üL +

Y

L
u0 − Y

L
uL = −Txx(0) (3.7.1.16)

ρL

6
ü0 +

ρL

3
üL − Y

L
u0 +

Y

L
uL = Txx(L) (3.7.1.17)

In the frequency domain equations (3.7.1.16)–(3.7.1.17) can be written

iωρ
L

3
v0 + iωρ

L

6
vL +

Y

iωL
v0 − Y

iωL
vL = −Txx(0) (3.7.1.18)

iωρ
L

6
v0 + iωρ

L

3
vL − Y

iωL
v0 +

Y

iωL
vL = Txx(L) (3.7.1.19)

where v0 and vL are the velocities at the two ends of the bar. These equations can be
represented by the equivalent circuit whereM = ρAL is the mass of the bar and C = L/(Y A)
is the compliance of the bar.
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-Txx(0)A -Txx(L)A

Figure 3.12. Equivalent circuit for the longitudinal vibration of a bar

3.7.2 Vibration of a Ceramic Stack with Nonuniform Material
Properties

Consider a stack of ceramic pieces as shown in figure 3.13. Each ceramic piece has a thin

� � � x3

�

�

Figure 3.13. Stack of Ceramic Pieces

electrode on each of the parallel surfaces orthogonal to the x3 direction. The pieces in the
stack are arranged so that the polarization directions alternate between ±x3. Thus, any
two adjacent pieces have opposite polarization directions. The ceramic pieces are wired in
parallel with every other electrode at zero potential. In the approximate model it will be
assumed that all variables have only an x3 spatial dependence and have components only
in the x3 direction. This assumption leads to the following one-dimensional equations for a
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ceramic piece

T ′
33 = ρü3 = iωρv3 Balance of momentum (3.7.2.1)
S33 = u′

3 Strain-displacement relation (3.7.2.2)

S33 = sE
33T33 + d33E3 Constitutive relation (3.7.2.3)

D3 = d33T33 + εT33E3 Constitutive relation (3.7.2.4)

where u3 is the x3 component of displacement, T33 is the 33-component of the stress tensor
T , ρ is the density, S33 is the 33-component of the strain tensor S, E3 is the 3-component
of the electric field, D3 is the 3-component of the electric displacement, and sE

33, d33, εT33
are material constants. Moreover, �′ denotes differentiation with respect to x3. It will be
assumed that the density, length, and cross-sectional area of each ceramic piece are the same,
but that sE

33, d33, and εT33 vary from piece to piece. Let sE
33(n), d33(n), and εT33(n) denote the

parameters for the n-th piece.

Assume that the displacement u3 varies linearly across the stack, i.e.,

u3(x3)
.= u0ψ0(x3) + u1ψ1(x3) (3.7.2.5)

where u0 and u1 are the displacements at the left and right ends of the stack respectively
and ψ0, ψ1 are the linear interpolation functions on 0 ≤ x3 ≤ L defined by

ψ0(x) = 1 − x/L (3.7.2.6)
ψ1(x) = x/L. (3.7.2.7)

Following Galerkin’s method, we multiply equation (3.7.2.1) by ψn and integrate from 0 to
L. This yields ∫ L

0
T ′

33ψn dx3 = iωρ

∫ L

0
v3ψn dx3 n = 0, 1. (3.7.2.8)

Integrating equation (3.7.2.8) by parts, we get

iωρ

∫ L

0
v3ψn dx3 +

∫ L

0
T33ψ

′
n dx3 = T33ψn

∣∣∣∣
L

0
n = 0, 1. (3.7.2.9)

It follows from equations (3.7.2.2) and (3.7.2.3) that

T33 =
1
sE
33
u′

3 − d33

sE
33

E3. (3.7.2.10)

Substituting equation (3.7.2.10) into equation (3.7.2.9), we get

iωρ

∫ L

0
v3ψn dx3 +

∫ L

0

1
sE
33
u′

3ψ
′
n dx3 −

∫ L

0

d33

sE
33

E3ψ
′
n dx3 = T33ψn

∣∣∣∣
L

0

n = 0, 1. (3.7.2.11)
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Assume that the potential varies approximately linearly across each ceramic piece. Then the
electric field E3 is approximately constant in each ring. The voltage E on each ring is given
approximately by

E
.= E3l. (3.7.2.12)

It follows from equations (3.7.2.5)–(3.7.2.7) that

v3 = v0ψ0 + v1ψ1 (3.7.2.13)

ψ′
0 = − 1

L
(3.7.2.14)

ψ′
1 =

1
L

(3.7.2.15)

u′
3 =

u1 − u0

L
. (3.7.2.16)

Moreover, ∫ L

0
ψ2

0 dx3 =
∫ L

0
ψ2

1 dx3 =
L

3
(3.7.2.17)

and ∫ L

0
ψ0ψ1 dx3 =

L

6
. (3.7.2.18)

Substituting equations (3.7.2.12)–(3.7.2.18) into each of the equations that make up equation
(3.7.2.11), we get

iωρ

(
v0
L

3
+ v1

L

6

)
− u1 − u0

L2

∫ L

0

1
sE
33
dx3 +

E

lL

∫ L

0

d33

sE
33
dx3 = −T33(0) (3.7.2.19)

iωρ

(
v0
L

6
+ v1

L

3

)
+
u1 − u0

L2

∫ L

0

1
sE
33
dx3 − E

lL

∫ L

0

d33

sE
33
dx3 = T33(L). (3.7.2.20)

Since the polarization direction changes from piece to piece, the constant d33 changes sign
from piece to piece. However, the voltage E also changes sign in the same way. In equations
(3.7.2.19)–(3.7.2.20) the parameter d33 always occurs in the combination Ed33. Therefore, it
is not necessary change the signs from piece to piece. If we define

Y E
33(n) =

1
sE
33(n)

and φ(n) =
d33(n)A
sE
33(n)l

, (3.7.2.21)

then the integrals in equations (3.7.2.19)–(3.7.2.20) can be written

∫ L

0

1
sE
33
dx3 = l

N∑
n=1

1
sE
33(n)

= l

N∑
n=1

Y E
33(n) (3.7.2.22)

∫ L

0

d33

sE
33
dx3 = l

N∑
n=1

d33(n)
sE
33(n)

=
l2

A

N∑
n=1

φ(n). (3.7.2.23)
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If we define

Ȳ E
33 =

1
N

N∑
n=1

Y E
33(n) (3.7.2.24)

φ̄ =
1
N

N∑
n=1

φ(n), (3.7.2.25)

then ∫ L

0

1
sE
33
dx3 = LȲ E

33 (3.7.2.26)∫ L

0

d33

sE
33
dx3 =

lL

A
φ̄. (3.7.2.27)

Thus, equations (3.7.2.19)–(3.7.2.20) can be written

iωρ

(
v0
L

3
+ v1

L

6

)
− u1 − u0

L
Ȳ E

33 +
φ̄E

A
= −T33(0) (3.7.2.28)

iωρ

(
v0
L

6
+ v1

L

3

)
+
u1 − u0

L
Ȳ E

33 − φ̄E

A
= T33(L). (3.7.2.29)

If we define

M = ρLA (3.7.2.30)

K̄ =
Ȳ E

33A

L
(3.7.2.31)

and

F0 = −T33(0)A (3.7.2.32)
F1 = −T33(L)A, (3.7.2.33)

then equations (3.7.2.28)–(3.7.2.29) become

(
iω
M

3
+
K̄

iω

)
v0 +

(
iω
M

6
− K̄

iω

)
v1 + φ̄E = F0 (3.7.2.34)

(
−iωM

6
+
K̄

iω

)
v0 −

(
iω
M

3
+
K̄

iω

)
v1 + φ̄E = F1. (3.7.2.35)
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The electric displacement �D satisfies Maxwell’s equation

div �D = ρe (3.7.2.36)

where ρe is the free-charge density. In the ceramic there is no free-charge, and hence

div �D = 0. (3.7.2.37)

Since we are assuming that �D has only a 3-component, it follows that D3 is constant in a
ceramic piece. Applying the divergence theorem to equation (3.7.2.36) for a small cylindrical
volume with axis in the x3-direction that contains the charge on the electrode and has one
face in the ceramic and the other inside the electrode, we get

D3 =
Q

A
=

I

iωA
. (3.7.2.38)

Here Q is the positive charge on the electrode and I is the current into the electrode.
Combining this relation with equation (3.7.2.4), we obtain

I = iωd33AT33 + iωεT33E3

= iωd33AT33 + iω

(
εT33A

l

)
E. (3.7.2.39)

If we now combine equation (3.7.2.39) with equation (3.7.2.10), we get

I = iωd33A

(
1
sE
33
u′

3 − d33

sE
33

E

l

)
+ iω

(
εT33A

l

)
E

= iω
d33A

sE
33
u′

3 + iω

(
εT33 − d2

33

sE
33

)
A

l
E

=
d33A

sE
33L

(v1 − v0) + iω
(εT33 − d2

33/s
E
33)A

l
E. (3.7.2.40)

If we define

C0 =
(εT33 − d2

33/s
E
33)A

l
, (3.7.2.41)

then equation (3.7.2.40) can be written

I =
φ

N
(v1 − v0) + iωC0E. (3.7.2.42)

Thus, for the n-th ring we have

I(n) =
φ(n)
N

(v1 − v0) + iωC0(n)E. (3.7.2.43)
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A reversal of the polarization direction changes the signs of I(n), φ(n), and E. Thus, equation
(3.7.2.43) remains valid for either polarization direction. Summing equation (3.7.2.43) over
n, we get

I =
N∑

n=1

I(n) =
(

1
N

N∑
n=1

φ(n)
)

(v1 − v0) + iω

N∑
n=1

C0(n)E (3.7.2.44)

where I is the total current into the stack. If we define

C̄0 =
1
N

N∑
n=1

C0(n), (3.7.2.45)

then equation (3.7.2.44) can be written

I = φ̄(v1 − v0) + iωNC̄0E. (3.7.2.46)

In summary, the equations for the stack can be written(
iω
M

3
+
K̄

iω

)
v0 +

(
iω
M

6
− K̄

iω

)
v1 + φ̄E = F0

(
−iωM

6
+
K̄

iω

)
v0 −

(
iω
M

3
+
K̄

iω

)
v1 + φ̄E = F1.

φ̄(v1 − v0) + iωNC̄0E = I

where

M = ρAL

K̄ =
Ȳ E

33A

L

φ̄ =
1
N

N∑
n=1

φ(n)

C̄0 =
1
N

N∑
n=1

C0(n)

and

F0 = −T33(0)A
F1 = −T33(L)A.

These equations can be represented by the following equivalent circuit

3-45



– M/6

1/K

1:φ

N C 0
E

I

M/2 M/2

F 0 F 1

v1v0

Figure 3.14. Equivalent circuit for a ceramic stack with nonidentical pieces

3.8 One-dimensional (plane wave) Model of a Piezo-
electric Rod

In this section we will develop a one-dimensional model for a piezoelectric ceramic rod
polarized in the length direction. Figure 3.15 shows a piezoelectric ceramic rod of length L
polarized in the x3 direction. The rod is electroded on the ends as shown. The voltage and
current at the electrical terminals are denoted by E and I. Since the piezoelectric material
is polarized, the orientation of E and I relative to the direction of polarization is important.
It will be assumed that there is no variation of any of the physical quantities in the x1 and
x2 directions. For this reason the model we are developing is also called a plane wave model.

3-46



Polar izat ion ElectrodeElectrode

�� � � �� � �

�

�

��

Figure 3.15. Piezoelectric ceramic rod polarized in the axial direction

In addition, it will be assumed that there is no fringing of the electric field, i.e., the electric
field is confined to the piezoelectric material. Derivatives with respect to x3 will be denoted
by a prime, i.e., d�

dx3
= �′. With the above assumptions the equation of motion becomes

T ′
33 = −ω2ρu3 (3.8.1)

where ρ is the density of the material, T33 is the 33-component of the stress tensor, and u3

is the 3-component of the displacement.

The constitutive equations can be written

S33 = SD
33T33 + g33D3 (3.8.2)

E3 = −g33T33 +
1
εT33

D3 (3.8.3)

where S33 is the 33-component of the strain tensor, D3 is the 3-component of electric dis-
placement, and E3 is the 3-component of electric field. The strain is related to displacement
by

S33 = u′
3. (3.8.4)

The electric displacement D satisfies Maxwell’s equation

div D = ρe (3.8.5)

where ρe is the free charge density. The charge density is positive for positive charge and
negative for negative charge. Since the piezoelectric ceramic material is a dielectric, there
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is no free charge inside the ceramic rod. All of the free charge is confined to the electrodes.
Thus, it follows from equation (3.8.5) that

D′
3 = 0 inside the piezoelectric rod (3.8.6)

and hence D3 is constant along the length of the rod. If we assume that the electrodes are
perfect conductors, then D vanishes inside the electrodes. Since we are assuming no fringing,
D vanishes outside the rod. We will also assume that D3 is constant across the cross-section
of the rod.

Pil l  box with
surface S

Electrode
Ceramic ��

Figure 3.16. Pill box surrounding interface between piezoelectric material and electrode

If we integrate equation (3.8.5) over the volume of the pill box shown in figure 3.16 and
apply the divergence theorem, we obtain∫

S

D · n = Q (3.8.7)

where Q is the charge on the electrode, S is the surface of the pill box, and n is the outward
normal to S. In view of the assumptions we have made concerning D, equation (3.8.7)
becomes

Q =
∫

S

D · n .= D3A (3.8.8)

where A is the cross-sectional area of the rod. The current I is the time derivative of the
charge Q. Thus,

D3 =
Q

A
=

I

iωA
. (3.8.9)

Solving the constitutive equation (3.8.2) for T33 and making use of equation (3.8.4), we get

T33 =
1
SD

33
u′

3 − g33

SD
33

D3. (3.8.10)
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Substituting equation (3.8.10) into equation (3.8.3), we get

E3 = − g33

SD
33
u′

3 +
(

1
εT33

+
g2
33

SD
33

)
D3. (3.8.11)

Since we are neglecting magnetic effects, the electric field is given by the gradient of a
potential, i.e.,

E = −∇φ. (3.8.12)

Therefore, ∫ L

0
E3 dx3 = φ0 − φL = E (3.8.13)

where φ0 is the potential at x3 = 0, φL is the potential at x3 = L, and E is the terminal
voltage as shown in figure 3.15. Integrating equation (3.8.11) over the length of the rod and
making use of equation (3.8.13), we get

E = − g33

SD
33

[u3(L) − u3(0)] +
(

1
εT33

+
g2
33

SD
33

)
D3L

= − g33

iωSD
33

[v3(L) − v3(0)] +
(

1
εT33

+
g2
33

SD
33

)
IL

iωA
(3.8.14)

where v3 is the velocity in the 3-direction. Let us define

εLC =
(

1
εT33

+
g2
33

SD
33

)−1

(3.8.15)

C0 =
εLCA

L
(3.8.16)

N =
g33C0

SD
33

. (3.8.17)

Then, equation (3.8.14) becomes

E = − N

iωC0
[v3(L) − v3(0)] +

I

iωC0
. (3.8.18)

Substituting equation (3.8.4) into equation (3.8.2), we get

u′
3 = SD

33T33 + g33D3. (3.8.19)

Differentiating equation (3.8.19) and making use of equations (3.8.1) and (3.8.6), we get

u′′
3 = −ω2ρSD

33u3

or equivalently
u′′

3 + k2u3 = 0 (3.8.20)
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where

k2 = ω2ρSD
33 =

ω2

c2
, c2 =

1
ρSD

33
. (3.8.21)

Thus, u3 satisfies a one-dimensional wave equation. Clearly, v3 satisfies this same wave
equation, i.e.,

v′′
3 + k2v3 = 0. (3.8.22)

The general solution of equation (3.8.22) has the form

v3(x3) = α sin(kx3) + β cos(kx3). (3.8.23)

Evaluating equation (3.8.23) at x3 = 0 and x3 = L, we get

v3(0) = β (3.8.24)
v3(L) = α sin(kL) + β cos(kL). (3.8.25)

Solving equations (3.8.24)–(3.8.25), we get

β = v3(0) (3.8.26)

α =
v3(L) − v3(0) cos(kL)

sin(kL)
. (3.8.27)

Differentiating equation (3.8.23), we obtain

v′
3(x3) = k(α cos kx3 − β sin kx3). (3.8.28)

Evaluating equation (3.8.28) at x3 = 0 and x3 = L, we get

v′
3(0) = kα (3.8.29)

v′
3(L) = k(α cos kL− β sin kL). (3.8.30)

Equation (3.8.10) can be written

T33 =
1

iωSD
33
v′

3 − g33

SD
33

I

iωA
. (3.8.31)

Substituting equation (3.8.29) into equation (3.8.31), we get

T33(0) =
kα

iωSD
33

− g33

SD
33

I

iωA
. (3.8.32)

It is easily verified from the definitions in equation (3.8.21) that

k

ωSD
33

= ρc. (3.8.33)
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It follows from the definition given in equation (3.8.17) that

g33

SD
33

=
N

C0
. (3.8.34)

Combining equations (3.8.32)–(3.8.34), we get

T33(0) = −iρcα− NI

iωC0A
. (3.8.35)

Substituting equation (3.8.27) into equation (3.8.35) and rearranging terms, we obtain

−T33(0)A = −iρcA[v3(0) cot(kL) − v3(L) csc(kL)] +
N

iωC0
I. (3.8.36)

In a similar manner it can be shown that

−T33(L)A = iρcA[v3(L) cot(kL) − v3(0) csc(kL)] +
N

iωC0
I. (3.8.37)

If we define impedances z1 and z2 by

z1 = iρcA tan(1
2kL) z2 =

ρcA

i sin(kL)
, (3.8.38)

then equations (3.8.36)–(3.8.37) can be written

−T33(0)A = (z1 + z2)v3(0) − z2v3(L) +
N

iωC0
I (3.8.39)

−T33(L)A = z2v3(0) − (z1 + z2)v3(L) +
N

iω.C0
I (3.8.40)

Equations (3.8.39)–(3.8.40) together with equation (3.8.18) can be represented by the equiv-
alent circuit shown in figure 3.17.

The equations for a nonpiezoelectric elastic rod are the same as those given in equations
(3.8.39)–(3.8.40) with the last term in each equation omitted, i.e.,

−T33(0)A = (z1 + z2)v3(0) − z2v3(L) (3.8.41)
−T33(L)A = z2v3(0) − (z1 + z2)v3(L) (3.8.42)

The equivalent circuit for an elastic rod is shown in figure 3.18.

Let us now consider the case of two piezoelectric pieces placed end to end and connected
electrically in parallel as shown in figure 3.19. Notice that the polarization is in opposite
directions in the two pieces. There are a number of sign changes that occur when the
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Figure 3.17. Equivalent circuit for a piezoelectric ceramic rod
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Figure 3.18. Equivalent circuit for an elastic rod

polarization is in the negative x3-direction, but as we will see these sign changes always
occur in pairs. The equations for the second piece are exactly the same as for the first
piece if they are referred to an axis pointing in the negative x3-direction. Thus, we need to
see what happens when the direction of the x3-axis is reversed. The constitutive equations
as usually presented assume that the x3-axis is the direction of polarization. If we reverse
this axis the sign of g33 changes. However, the sign of D3 also changes. Thus, the product
g33D3 remains unchanged. The stress component T33 is given by T33 = �e3 · T�e3. Thus,
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if the direction of �e3 is reversed, the component T33 remains unchanged. Similarly, the
strain component S33 remains unchanged when the axes are reversed. It follows that the
constitutive relation (3.8.2) has the same form when the x3-axis is reversed. In the second
constitutive equation E3, D3, and g33 change sign when the x3-axis is reversed. Thus, the
second constitutive equation (3.8.3) also has the same form when the axes are reversed. The
quantity v3(L) − v3(0) occurring in equation (3.8.18)remains unchanged since the direction
of e3 reverses and the roles of the endpoints 0 and L interchange. Similarly, in equations
(3.8.39)–(3.8.40) the roles of 0 and L are interchanged and the velocities v3 change signs
leaving the form of the two equations unchanged. Thus, we can use the same equations for
the two pieces with the variables meaning the same thing in both.

�

�

Polar izat ionPolar izat ion

Figure 3.19. Two ceramic pieces connected electrically in parallel

3.9 One-dimensional Model of a Magnetostrictive Rod

In this article we will develop a one-dimensional model for a magnetostrictive rod biased
in the length direction. Figure 3.20 shows a magnetostrictive rod of length L biased in the
x3 direction. The magnetic path is completed by a material having a very high magnetic
permeability. Thus, the magnetic field H vanishes in this portion of the magnetic path.
The voltage and current at the electrical terminals are denoted by E and I. Since the
magnetostrictive material is biased, the orientation of E and I relative to the bias direction
is important. It is also important which direction the coil is wound around the rod. We will
assume that there is no variation of any of the physical quantities in the x1 and x2 directions.
For this reason the model we are developing is also called a plane wave model.
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Figure 3.20. Magnetostrictive rod biased in the axial direction

In addition, it will be assumed that there is no fringing of the magnetic field, i.e., the
magnetic field is confined to the magnetostrictive material. Derivatives with respect to x3

will be denoted by a prime, i.e., d�
dx3

= �′. With the above assumptions the equation of
motion becomes

T ′
33 = −ω2ρu3 (3.9.1)

where ρ is the density of the material, T33 is the 33-component of the stress tensor, and u3

is the 3-component of the displacement.

The constitutive equations can be written

S33 = SB
33T33 + g33B3 (3.9.2)

H3 = −g33T33 +
1
µT

33
B3 (3.9.3)

where S33 is the 33-component of the strain tensor, H3 is the 3-component of the mag-
netic field, and B3 is the 3-component of the magnetic induction. The strain is related to
displacement by

S33 = u′
3. (3.9.4)

The magnetic induction B satisfies Maxwell’s equation

div B = 0. (3.9.5)

Because of equation (3.9.5) and the plane wave assumption, the magnetic induction B is
perpendicular to the cross-section of the magnetic path and is constant along the path. In
particular,

B′
3 = 0 in the magnetostrictive rod. (3.9.6)
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Solving the constitutive equation (3.9.2) for T33 and making use of equation (3.9.4), we get

T33 =
1
SB

33
u′

3 − g33

SB
33

B3. (3.9.7)

Substituting equation (3.9.7) into equation (3.9.3), we get

H3 = − g33

SB
33
u′

3 +
(

1
µT

33
+
g2
33

SB
33

)
B3. (3.9.8)

Differentiating equation (3.9.7) and making use of equations (3.9.1) and (3.9.6), we get

u′′
3 = −ω2ρSB

33u3

or equivalently
u′′

3 + k2u3 = 0 inside the magnetostrictive rod (3.9.9)

where

k2 = ω2ρSB
33 =

ω2

c2
, c2 =

1
ρSB

33
. (3.9.10)

Thus, u3 satisfies a one-dimensional wave equation. Clearly, v3 satisfies this same wave
equation, i.e.,

v′′
3 + k2v3 = 0 inside the magnetostrictive rod. (3.9.11)

The general solution of equation (3.9.11) has the form

v3(x3) = α sin(kx3) + β cos(kx3). (3.9.12)

Evaluating equation (3.9.12) at x3 = 0 and x3 = L, we get

v3(0) = β (3.9.13)
v3(L) = α sin(kL) + β cos(kL). (3.9.14)

Solving equations (3.9.13)–(3.9.14), we get

β = v3(0) (3.9.15)

α =
v3(L) − v3(0) cos(kL)

sin(kL)
. (3.9.16)

Differentiating equation (3.9.12), we obtain

v′
3(x3) = k(α cos kx3 − β sin kx3). (3.9.17)

Evaluating equation (3.9.17) at x3 = 0 and x3 = L, we get

v′
3(0) = kα (3.9.18)

v′
3(L) = k(α cos kL− β sin kL). (3.9.19)
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Equation (3.9.7) can be written

T33 =
1

iωSB
33
v′

3 − g33

SB
33

B3. (3.9.20)

Substituting equation (3.9.18) into equation (3.9.20), we get

T33(0) =
kα

iωSB
33

− g33

SB
33

B3. (3.9.21)

It is easily verified from the definitions in equation (3.9.10) that

k

ωSB
33

= ρc. (3.9.22)

Combining equations (3.9.21)–(3.9.22), we get

T33(0) = −iρcα− g33

SB
33

B3. (3.9.23)

Substituting equation (3.9.16) into equation (3.9.23) and rearranging terms, we obtain

−T33(0)A = −iρcA[v3(0) cot(kL) − v3(L) csc(kL)] +
g33A

SB
33

B3. (3.9.24)

In a similar manner it can be shown that

−T33(L)A = iρcA[v3(L) cot(kL) − v3(0) csc(kL)] +
g33A

S33B

B3. (3.9.25)

If we define impedances z1 and z2 by

z1 = iρcA tan(1
2kL) z2 =

ρcA

i sin(kL)
, (3.9.26)

then equations (3.9.24)–(3.9.25) can be written

−T33(0)A = (z1 + z2)v3(0) − z2v3(L) +
g33A

SB
33

B3 (3.9.27)

−T33(L)A = z2v3(0) − (z1 + z2)v3(L) +
g33A

SB
33

B3. (3.9.28)

We will now show that the magnetic induction B3 can be related to the voltage E at the
terminals of the coil. Consider a loop of wire as shown in figure 3.21. Let C be a closed path
that is along the centerline of the wire. By Stoke’s theorem,∮

C

E · dl =
∫

S

curl E · n dS (3.9.29)
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Figure 3.21. A single loop of wire

where E is the electric field and S is the surface area bounded by C. Since E vanishes inside
the wire, it follows that ∮

C

E · dl =
∮

Cab

E · dl (3.9.30)

where Cab is the portion of the path C that lies outside the wire. We assume that outside the
wire E satisfies curl E = 0, and hence that E can be written as the gradient of a potential,
i.e.,

E = −∇φ outside wire. (3.9.31)

Thus, ∮
C

E · dl = −
∮

Cab

∇φ · dl = φa − φb (3.9.32)

where φa is the potential at a and φb is the potential at b. The electric field and the magnetic
induction satisfy Maxwell’s equation

curl E = −Ḃ = −iωB. (3.9.33)

Substituting equation (3.9.33) into equation (3.9.29), we get∮
C

E · dl = −iω
∫

S

B · n dS. (3.9.34)

As a result of the plane wave assumption, equation (3.9.34) can be approximated by∮
C

E · dl = −iωAB · n (3.9.35)
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where A is the area of the surface region S. Equations (3.9.32) and (3.9.35) can be combined
to give

φa − φb = −iωAB · n. (3.9.36)

Applying equation (3.9.36) to each loop of the coil, it follows that

E = iωNB3A (3.9.37)

or
B3 =

E

iωNA
. (3.9.38)

Let us now integrate the magnetic field H around the path shown in figure 3.22. By Stoke’s

Ter fenol  Rod

Wi res

�� � � �� � �

Figure 3.22. Integration path for the magnetic field

theorem, ∮
H · dl =

∫
S′

curl H · ν dS (3.9.39)

where S′ is the surface bounded by the path and ν is the normal to S ′ pointing into the
paper. The magnetic field H and the current density J satisfy Maxwell’s equation

curl H = J. (3.9.40)

Combining equations (3.9.39)–(3.9.40), we get∮
H · dl =

∫
S′

J · ν dS. (3.9.41)

The only current passing through S ′ is in the wires. Thus, equation (3.9.41) becomes∮
H · dl = NI. (3.9.42)
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Since the magnetic field H vanishes in the return path, equation (3.9.42) can be written

∫ L

0
H3 dx3 = NI. (3.9.43)

Integrating equation (3.9.8) from 0 to L and making use of equation (3.9.43), we get

∫ L

0
H3 dx3 = − g33

iωSB
33

[v3(L) − v3(0)] +
(

1
µT

33
+
g2
33

SB
33

)
B3L. (3.9.44)

Combining equations (3.9.43)–(3.9.44), we get

I = − g33

iωNSB
33

[v3(L) − v3(0)] +
(

1
µT

33
+
g2
33

SB
33

)
L

N
B3. (3.9.45)

We can now combine equations (3.9.27)–(3.9.28), (3.9.38), and (3.9.45) to obtain

−T33(0)A = (z1 + z2)v3(0) − z2v3(L) +
g33

iωNSB
33
E (3.9.46)

−T33(L)A = z2v3(0) − (z1 + z2)v3(L) +
g33

iωNSB
33
E. (3.9.47)

I = − g33

iωNSB
33

[v3(L) − v3(0)] +
(

1
µT

33
+
g2
33

SB
33

)
L

iωN2A
E. (3.9.48)

Define

µLC =
(

1
µT

33
+
g2
33

SB
33

)−1

(3.9.49)

LLC =
µLCN

2A

L
(3.9.50)

G =
g33LLC

NSB
33
. (3.9.51)

Then equations (3.9.46)–(3.9.48) can be written

−T33(0)A = (z1 + z2)v3(0) − z2v3(L) +
G

iωLLC

E (3.9.52)

−T33(L)A = z2v3(0) − (z1 + z2)v3(L) +
G

iωLLC

E. (3.9.53)

I = − G

iωLLC

[v3(L) − v3(0)] +
1

iωLLC

E. (3.9.54)

These equations can be represented by the equivalent circuit shown in figure 3.23 This circuit
makes use of a gyrator. The behavior of a gyrator is shown in figure 3.24.
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Figure 3.23. Equivalent circuit for a magnetostrictive rod
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Figure 3.24. Description of a gyrator
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Consider next a pair of magnetostrictive rods connected electrically in series as shown in
figure 3.25. The DC bias field is in the x3-direction in one of the rods and in the negative

Coil  with N turns

�

�

Terfenol  Rod
�� � � �� � �

��

Coil  with N turns
Ter fenol  Rod

�

�

Figure 3.25. Two magnetostrictive rods connected electrically in series

x3-direction for the other rod. As in the piezoelectric case the sign changes that occur when
the direction of the x3-axis is reversed are such that the same equations can be used for
both of the rods. Since the two rods are connected electrically in series, the currents in the
two coils are the same. However, the magnetostrictive case is different from the piezoelectric
case in that the magnetic coupling between the two rods also forces the voltages across the
two coils to be the same. It should also be noted that the terminal voltage is 2E.

3-61



3.10 Cascading of Plane Wave Segments

Many transduction devices are made up of multiple segments connected end-to-end as shown
in figure 3.26. For example, piezoelectric ceramic drivers often consist of a stack of ceramic
pieces cemented together and connected electrically in parallel. In this section we will show

Segments

Figure 3.26. A multisegment device

ways of taking the plane wave models of the individual segments and combining them to
obtain an overall model of the segmented device. To be more specific I will write the equations
for the piezoelectric case, but the magnetostrictive case is done in the same manner.

The equations for a piezoelectric ceramic piece have the form

FL = Z11vL + Z12vR + αI (3.10.1)
FR = −Z12vL − Z11vR + αI (3.10.2)
E = −α(vR − vL) + Z0I (3.10.3)

where FL is the value of −AT33 on the left end, vL is the 3-component of velocity on the left
end, FR is the value of −AT33 on the right end, vR is the 3-component of velocity on the
right end, E is the voltage, and I is the current. Solving equation (3.10.3) for I, we obtain

I =
1
Z0
E +

α

Z0
vR − α

Z0
vL (3.10.4)

Substituting equation (3.10.4) into equations (3.10.1)–(3.10.2), we get

FL =
(
Z11 − α2

Z0

)
vL +

(
Z12 +

α2

Z0

)
vR +

α

Z0
E (3.10.5)

FR =
(

−Z12 − α2

Z0

)
vL +

(
−Z11 +

α2

Z0

)
vR +

α

Z0
E. (3.10.6)
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These equations have the form

FL = Z ′
11vL + Z ′

12vR + α′E (3.10.7)
FR = −Z ′

12vL − Z ′
11vR + α′E. (3.10.8)

We have chose to represent these equations in terms of the voltage E since E is constant
for each piece when they are connected in parallel. For the magnetostrictive case we would
generally use the magnetic flux BA since this quantity is constant around a magnetic path.

If we solve equation (3.10.8) for vL, we obtain

vL = − 1
Z ′

12
FR − Z ′

11

Z ′
12
vR +

α′

Z ′
12
E. (3.10.9)

Substituting equation (3.10.9) into equation (3.10.7), we obtain

FL = −Z
′
11

Z ′
12
FR +

(
Z ′

12 − (Z ′
11)

2

Z ′
12

)
vR + α′

(
1 +

Z ′
11

Z ′
12

)
E. (3.10.10)

Equations (3.10.9)–(3.10.10) can be written in the matrix form(
FL

vL

)
=
(
A11 A12

A21 A22

)(
FR

vR

)
+ E

(
β1

β2

)
(3.10.11)

where

A11 = −Z
′
11

Z ′
12

(3.10.12)

A12 = Z ′
12 − (Z ′

11)
2

Z ′
12

(3.10.13)

A21 = − 1
Z ′

12
(3.10.14)

A22 = −Z
′
11

Z ′
12

(3.10.15)

β1 = α

(
1 +

Z ′
11

Z ′
12

)
(3.10.16)

β2 =
α′

Z ′
12
. (3.10.17)

It is easily verified that the matrix A has the properties

A22 = A11 and detA = 1. (3.10.18)

Suppose now that we have two pieces that are cemented end-to-end and that the electrical
terminals are connected in parallel. Then, we can write a matrix equation like equation
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(3.10.11) for each of the pieces, i.e.,

x
(1)
L = A(1)x

(1)
R + Eb(1) (3.10.19)

x
(2)
L = A(2)x

(2)
R + Eb(2) (3.10.20)

where xL and xR are column vectors of length 2 containing the appropriate F and v com-
ponents. By continuity of velocity and the stress tensor, we have

x
(1)
R = x

(2)
L . (3.10.21)

Thus, equations (3.10.19)–(3.10.20) can be combined to give

x
(1)
L = A(1)A(2)x

(2)
R + E

(
b(1) + A(1)b(2)). (3.10.22)

If the pieces are identical, then the above relation becomes

x
(1)
L = A2x

(2)
R + E(I + A)b. (3.10.23)

It can be easily verified that for n pieces, we have

x
(1)
L = Anx

(n)
R + E(I + A+ · · · + An−1)b. (3.10.24)

We will next show a couple of ways to raise a matrix to the n-th power. Let E be a matrix
whose columns are the eigenvectors of A. Then

AE = EΛ (3.10.25)

where Λ is a diagonal matrix of the eigenvalues of A. It follows from equation (3.10.25) that

A = EΛE−1. (3.10.26)

Thus,

An = (EΛE−1)(EΛE−1) · · · (EΛE−1) (3.10.27)
= EΛnE−1. (3.10.28)

Since Λ is a diagonal matrix, raising it to the n-th power only involves raising the diagonal
entries to the n-th power. Moreover, it is also true that

I + A+ · · · + An−1 = E(I + Λ + · · · + Λn−1)E−1. (3.10.29)

A second way of computing these powers is to use the Cayley-Hamilton Theorem. This
theorem states that a matrix satisfies its own characteristic equation. The characteristic
equation of the 2 × 2 matrix A is given by

λ2 − tr(A)λ+ det(A) = 0. (3.10.30)
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Thus, A satisfies
A2 − tr(A)A+ det(A)I = 0 (3.10.31)

or equivalently,
A2 = tr(A)A− det(A)I. (3.10.32)

Suppose for some m, we have
Am = αmA+ βmI. (3.10.33)

Then
Am+1 = αmA

2 + βmA =
(
βm + tr(A)αm

)
A− αm det(A)I. (3.10.34)

It follows by induction that equation (3.10.33) holds for all m. Moreover, it follows from
equation (3.10.34) that αm and βm satisfy the recurrence relation

αm+1 = βm + tr(A)αm (3.10.35)
βm+1 = − det(A)αm. (3.10.36)

The starting values for this recursion are

α0 = 0 and β0 = 1. (3.10.37)

Moreover, we also have

I + A+ · · · + An−1 = (α0 + α1 + . . . αn−1)A+ (β0 + β1 + · · · + βn−1)I. (3.10.38)
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Chapter 4

Structure-Acoustic Coupling

The coupling of structural models to acoustic models depends on the type of models being
used. Infinite element acoustic models, for example, fit naturally into the finite element
program structure and thus need no special discussion of coupling. In this chapter we will
discuss the coupling of finite element type structural models to integral equation type acous-
tic models. In order to keep the discussion relatively simple we will restrict the discussion to
CHIEF type acoustic models. Some of the details for models employing higher order inter-
polation will be different, but the general approach is the same. An early and still excellent
reference on the subject of acoustic-structure coupling is the paper [Wilton, D.T., Acoustic
Radiation and Scattering from Elastic Structures, International Journal for Numerical Meth-
ods in Engineering, Vol. 13, 123–138(1978)]. A more recent reference is [Benthien, G.W.
and Schenck, H.A., Structure-Acoustic Coupling, Boundary Element Methods in Acoustics,
Ciskowski, R.D. and Brebbia, C.A. (Eds), Computational Mechanics Publications, Elsevier
Applied Science, Chapter 6 (1991) (prepublication draft copy)].

Recall that the finite element equations can be written in the matrix form

(−ω2M +K)U = F (4.1)

where M is the mass matrix, K is the stiffness matrix, U is a vector of the displacement de-
grees of freedom, and F is the load vector. For structure immersed in a fluid, the load vector
can be decomposed into an acoustic load vector F rad and a load vector FD corresponding to
other forces that drive the structure as shown below

(−ω2M +K)U = F rad + FD. (4.2)

Recall also that the components of the load vector F are given by

Fm =
∫

∂V

�t · �ψm (4.3)
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where ∂V is the boundary of the structure, �t is the stress vector on ∂V , and �ψm is the m-th
finite element interpolation function. In particular,

F rad
m =

∫
S

�t · �ψm (4.4)

where S is the radiating surface of the structure. On the fluid side of the surface S the stress
vector is given by

�t = −p�n (4.5)

where p is the acoustic pressure and �n is the outward normal to S. Substituting equation
(4.5) into equation (4.4), we get

F rad
m = −

∫
S

p�ψm · �n. (4.6)

If the surface S is subdivided into CHIEF subdivisions S1, . . . , SN and the pressure is assumed
to be approximately constant on each subdivision, then equation (4.6) becomes

F rad
m = −

∑
n

pn

∫
Sn

p�ψm · �n. (4.7)

If we define a coupling matrix C by

Cmn =
1
Sn

∫
Sn

p�ψm · �n, (4.8)

then equation (4.7) becomes
F rad

m = −
∑

n

pnSnCmn. (4.9)

Equation (4.9) can be written in the matrix form

F rad = −CDP (4.10)

where D is a diagonal matrix whose diagonals are the surface areas Sn.

Next we need to enforce continuity of normal velocity across the radiating boundary S. Since
the interpolation used in the acoustic problem by CHIEF is different from that used in the
finite element method for the structure, it is impossible to enforce exact continuity at every
point of S. Instead we enforce continuity in an average sense over each subdivision Sn, i.e.,

vn =
1
Sn

∫
Sn

�v · �n =
iω

Sn

∫
Sn

�u · �n. (4.11)

Here vn is the CHIEF normal velocity on the n-th subdivision, �v is the velocity vector, and �u
is the displacement vector. In the finite element method the displacement �u is approximated
in terms of the interpolation functions �ψm by

�u =
∑
m

Um
�ψm. (4.12)
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Substituting equation (4.12) into equation (4.11), we obtain

vn = iω
∑
m

Um
1
Sn

∫
Sn

�ψm · �n. (4.13)

This equation can be written in the matrix form

V = iωCTU. (4.14)

From the CHIEF acoustic model we have the following relation between the vector P of
surface pressures and the vector V of surface normal velocities

AP = BV. (4.15)

Solving the finite element equation (4.1) for U , we get

U = (−ω2M +K)−1F rad + (−ω2M +K)−1FD. (4.16)

Multiplying equation (4.16) by iωCT and making use of equation (4.14), we obtain

V = iωCT (−ω2M +K)−1F rad + iωCT (−ω2M +K)−1FD. (4.17)

In view of equation (4.10) the above equation becomes

V = −iωCT (−ω2M +K)−1CDP + iωCT (−ω2M +K)−1FD. (4.18)

Substituting equation (4.18) into the CHIEF equation (4.15) and rearranging terms, we
obtain

[A+ iωBCT (−ω2M +K)−1CD]P = iωBCT (−ω2M +K)−1FD. (4.19)

If this equation is solved for the surface pressure vector P , then the surface velocity vector V
can be obtained from equation (4.18). Once the surface pressures and velocities are known,
then the pressure can be calculated anywhere in the field using the Helmholtz integral rela-
tion. If the solution is needed at many frequencies and the finite element mass and stiffness
matrices are frequency independent, then it is efficient to use the eigenvalue/eigenvector
relation

(−ω2M +K)−1 = E(−ω2I + Ω)−1ET (4.20)

where E is a matrix whose columns are the finite element eigenmodes and Ω is a diagonal
matrix whose diagonal elements are the corresponding eigenfrequencies.
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Chapter 5

Electrical Interconnections

Often in transducer arrays there will be a combination of series and parallel electrical in-
terconnection of elements either to shade the array or to modify the input impedance. For
example, the elements might be partitioned into groups with the elements within the groups
connected in series and the groups connected in parallel. Such electrical interconnections
allow the elements to interact electrically as well as acoustically. In this section we will show
how all such series-parallel electrical interconnections can be reduced to two basic operations
that can be easily implemented on a computer.

Typically, our models of a transducer can be reduced to a linear relationship involving the
input voltage and current and the acoustic force and normal velocity degrees of freedom.
For an array we can arrange these equations in the form(

�E
�F

)
=
(
A1 A2

A3 A4

)(
�I
�V

)
(5.1)

where �E is a vector of the input voltages to all the array elements, �I is a vector of the input
currents to all the elements, �F is a vector of all the acoustic force degrees of freedom for all
the array elements, and �V is a vector of all the acoustic normal velocity degrees of freedom
for all the elements. The matrix in equation (5.1) will be referred to as the transfer matrix.

When two transducers are connected in series the currents to the elements are equated and
the voltages are added. When two transducers are connected in parallel the voltages to the
elements are equated and the currents are added. These are similar operations with the roles
of voltages and currents interchanged. Let us look at series interconnections first. Equating
currents amounts to adding two columns of the transfer matrix of equation (5.1) and then
eliminating the two original columns. Adding the corresponding voltages amounts to adding
the corresponding rows and then eliminating the original rows. Paralleling elements or groups
can be performed with the same operations once the roles of voltage and current have been
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interchanged. Equation (5.1) can be written in the alternate form(
�I
�F

)
=
(

A−1
1 −A−1

1 A2

A3A
−1
1 A4 − A3A

−1
1 A2

)(
�E
�V

)
(5.2)

in which the positions of �E and �I have been interchanged. Paralleling can be accomplished
by applying the same row and column additions described previously to this other form of the
transfer matrix. Obviously, it is not necessary to interchange all the voltages and currents as
shown in equation (5.2). Only the ones being paralleled need to be interchanged. The other
voltages and currents can be lumped with the forces and velocities. Thus, series-parallel
interconnections amount to two basic matrix operations

1. Adding appropriate rows and columns of the matrix and eliminating the originals being
added;

2. Interchanging the roles of voltage and current as shown in equation (5.2).

These matrix operations are easily implemented on a computer.
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Chapter 6

Material Parameters

Table 6.1 gives rough elastic parameters for various materials that might be used in a trans-
ducer. The purpose in providing these values is to provide a starting point for a modeler when
no measured values are available. A good reference for material properties of elastomers, fill
fluids, and adhesives is [Capps, R.N., Thompson, C.M., and Weber, F.J., Handbook of Sonar
Transducer Passive Materials, NRL Memorandum Report 4311, October 1981].

Table 6.1. Properties of Transducer Materials

Material Density (Kg/m3) Young’s Modulus (N/m2) Poisson’s Ratio

Alnico 7.0 × 103 17.0 × 1010 0.32
Alumina 3.6 × 103 27.0 × 1010 0.33
Aluminum 2.7 × 103 7.2 × 1010 0.33
Beryllium-Copper 8.2 × 103 22.5 × 1010 0.33
Brass 8.5 × 103 9.7 × 1010 0.33
Cork 0.24 × 103 0.006 × 1010

Copper 8.5 × 103 12.0 × 1010 0.35
Glass 2.4 × 103 6.5 × 1010 0.25
Gold 19.3 × 103 7.8 × 1010 0.38
Lead 11.3 × 103 1.7 × 1010 0.43
Lucite 1.2 × 103 0.40 × 1010 0.40
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continued from previous page

Material Density (Kg/m3) Young’s Modulus (N/m2) Poisson’s Ratio

Magnesium 1.7 × 103 4.3 × 1010 0.32
Nickel 8.8 × 103 21.0 × 1010 0.33
Nylon 1.1 × 103 0.36 × 1010 0.40
Platinum 21.4 × 103 17.0 × 1010 0.32
Polyethylene 0.90 × 103 0.076 × 1010 0.44
Polystyrene 1.1 × 103 0.53 × 1010 0.40
Polyvinyl Chloride 1.35 × 103 0.28 × 1010 0.40
Quartz 2.2 × 103 7.0 × 1010 0.20
Rubber (hard) 1.1 × 103 0.23 × 1010 0.49
Rubber (soft) 0.95 × 103 0.0005 × 1010 0.49
Rubber (rho-c) 1.03 × 103 0.0001 × 1010 0.49
Silver 10.5 × 103 7.7 × 1010 0.37
Stainless Steel 7.9 × 103 19.6 × 1010 0.30
Steel 7.7 × 103 20.0 × 1010 0.30
Tin 7.2 × 103 5.0 × 1010 0.33
Titanium 4.4 × 103 11.6 × 1010 0.32
Tungsten 19.0 × 103 36.0 × 1010 0.33
Zinc 7.1 × 103 9.3 × 1010 0.27

Table 6.2 gives some rough values for piezoelectric ceramic parameters. All values in this
table are given in metric units.

Table 6.2. Properties of Piezoelectric Ceramic Materials

Parameter BaTiO3 PZT-4 PZT-8 PZT-5

ρ 5550 7500 7600 7750
SE

11 8.6 × 10−12 12.3 × 10−12 11.1 × 10−12 16.4 × 10−12

SE
12 −2.6 × 10−12 −4.1 × 10−12 −3.7 × 10−12 −5.7 × 10−12

SE
13 −2.7 × 10−12 −5.3 × 10−12 −4.8 × 10−12 −7.2 × 10−12
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continued from previous page

Parameter BaTiO3 PZT-4 PZT-8 PZT-5

SE
33 9.1 × 10−12 15.5 × 10−12 13.9 × 10−12 18.8 × 10−12

SE
44 22.2 × 10−12 39.0 × 10−12 32.3 × 10−12 47.5 × 10−12

SE
66 22.4 × 10−12 32.7 × 10−12 29.6 × 10−12 44.3 × 10−12

d15 242 × 10−12 496 × 10−12 330 × 10−12 584 × 10−12

d31 −58 × 10−12 −123 × 10−12 −93 × 10−12 −171 × 10−12

d33 149 × 10−12 289 × 10−12 218 × 10−12 374 × 10−12

εT11 11.5 × 10−9 13.1 × 10−9 11.4 × 10−9 15.3 × 10−9

εT33 10.6 × 10−9 11.5 × 10−9 8.85 × 10−9 15.0 × 10−9

SD
11 8.3 × 10−12 11.0 × 10−12 10.1 × 10−12 14.5 × 10−12

SD
12 −2.9 × 10−12 −5.4 × 10−12 −4.7 × 10−12 −7.7 × 10−12

SD
13 −1.9 × 10−12 −2.2 × 10−12 −2.5 × 10−12 −3.0 × 10−12

SD
33 7.0 × 10−12 8.2 × 10−12 8.5 × 10−12 9.5 × 10−12

SD
44 17.1 × 10−12 20.2 × 10−12 22.7 × 10−12 25.2 × 10−12

SD
66 22.4 × 10−12 32.7 × 10−12 29.6 × 10−12 44.3 × 10−12

g15 21.0 × 10−3 37.9 × 10−3 28.9 × 10−3 38.2 × 10−3

g31 −5.5 × 10−3 −10.7 × 10−3 −10.5 × 10−3 −11.4 × 10−3

g33 14.1 × 10−3 25.1 × 10−3 24.6 × 10−3 24.9 × 10−3
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Chapter 7

Specific Projector types

In this chapter we will discuss the modeling of three types of projector that are currently of
high interest to the Navy—the Terfenol-driven class VII flextensional transducer, the slotted
cylinder projector, and the hydroacoustic projector. The models for these transducers use
many of the methods described in previous sections. The models discussed are applied to real
transducers of the appropriate type so that computed results can be compared to measured
results on the real devices. This comparison helps to ensure that the models do not neglect
any significant physical mechanisms. Many details of the models are discussed in Navy
reports that are not included on the CD-ROM since they contain military critical material.

7.1 Class VII Terfenol Driven Flextensional Projector

The Navy has had an interest in Terfenol-D magnetostrictive drivers due to this materials
high strain capability and its relatively low elastic modulus. The high strain capability
allows these drivers to be driven at high levels to get higher source levels. The low elastic
modulus allows resonant devices to be built at lower frequencies. A class VII flextensional
is attractive because, unlike the class IV flextensional, it provides more stress on the driver
with increased depth. This increased stress means that the manufacturer does not have to
highly stress the shell and driver during construction. A sufficient static stress is applied to
the driver at depth, where it is most needed. Figure 7.1 shows a typical Terfenol-driven class
VII flextensional transducer.

The modeling of this transducer is discussed in the report [Hobbs, S.L. and Gillette, D.,
Terfenol-D Dogbone Projector Modeling Report, SPAWAR Systems Center, San Diego Tech-
nical Report 1775, May 1998]. The model for the Terfenol drivers is based on the one-
dimensional plane wave theory discussed in section 3.7 of this handbook. The driver model
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Figure 7.1. An eight segment Terfenol class VII flextensional transducer.

is coupled to a finite element model of the flextensional shell and a CHIEF model for the
acoustic radiation. The above report also discusses how to model the series-parallel electrical
interconnection of the various half-stacks. Modeling the electrical interconnections is com-
plicated by the constraints placed on the voltages of the half-stacks in a complete magnetic
path by the magnetic coupling. The report also discusses the effects of material parame-
ter variations with applied static stress due to depth changes. Comparisons are made with
transducer measurements made at Lake Senneca. Comparisons are also made between the
plane wave model for a Terfenol driver and an ATILA finite element model.
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7.2 Slotted Cylinder Projector

The Navy has had an interest in Slotted Cylinder Projectors because they can produce high
acoustic output at low frequencies with a fairly compact device. Figure 7.2 shows a generic
Slotted Cylinder Projector (SCP). As the ceramic material expands and contracts, the sides
of the SCP vibrate much like a tuning fork. The motion is greatest near the slot.

Figure 7.2. Generic slotted cylinder projector.

The modeling of Slotted Cylinder Projectors is discussed in the report [DeJaco,J., Ben-
thien, G., Barach, D., and Gillette, D., Electroacoustic Modeling of Slotted Cylinder Projec-
tor Transducers, SPAWAR Systems Center, San Diego Technical Document 3047, January
1999]. This report also provides experimental validation of the modeling results. Additional
experimental data are contained in the report [DeJaco, J.F., Sanders Scale Advanced Slotted
Cylinder Projector (SSASCP) Single Element Seneca Lake Test Report, SPAWAR Systems
Center, San Diego Technical Document 2965, September 1997].
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7.3 Hydroacoustic Projector

Hydroacoustic projectors have been of interest to the Navy because they can produce high
acoustic output at low frequencies. Figure 7.3 shows a generic hydroacoustic projector. The
flow from a pump to the drive cavity is modulated by a sliding control valve. The flow
modulation varies the pressure in the drive cavity. The drive cavity is connected to radiating
diaphragms by drive pistons. The varying pressure in the drive cavity produces a force on
the drive pistons that, in turn, force the diaphragms to vibrate. These devices are inherently
nonlinear because the pressure drop across the control valve is proportional to the square of
the flow through the valve.

RADIATING DISK

RADIATING DISK

SUPPLY RETURN

VALVE

DRIVE PISTON

DRIVE PISTON

DRIVE CAVITY

DRIVE CAVITY

PS P
R

Figure 7.3. Generic hydroacoustic projector

The time-domain modeling of hydroacoustic projectors and arrays is discussed in the report
[Benthien, G.W. and Barach, D., Time-Domain Model for a Hydroacoustic Transducer Array,
NRaD Technical Report 1654, May 1994]. This report also provides experimental validation
of the modeling results.
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Chapter 8

Transducer Modelling Contributions
of Ralph Woollett

Dr. Ralph Woollett was involved in underwater transducer modelling at the New London
Laboratory of the Naval Underwater Systems Center from 1947 to 1984. He was truly one of
the pioneers in the modeling of underwater transducers. On this CD-ROM we have included
three publications of his work that illustrate the breadth of his modeling expertise and are
still important references on the subjects covered. The first publication included is [Woollett,
R.S., Sonar Transducer Fundamentals, Naval Underwater Systems Center]. The first part of
this document covers general transducer theory while the second part goes in to more detail
on longitudinal vibrators. The second publication included on this CD-ROM is [Woollett,
R.S., The Flexural Bar Transducer, Naval Underwater Systems Center]. This publication
is still considered the definitive work on this subject. The third publication included is
[Woollett, R.S., Theory of the Piezoelectric Flexural Disk Transducer with Applications to
Underwater Sound, USL Research Report No. 490, 1960]. Again this report is foundational
in the modeling of flexural disk transducers. Of course we can not capture all of Ralph’s
contributions in just three publications, but it is hoped that these will provide a useful
starting place.

8-1

xdcrfund.pdf
xdcrfund.pdf
flexbar.pdf
flexbar.pdf
flexdisk.pdf
flexdisk.pdf


Chapter 9

Lead Magnesium Niobate as an Active Sonar
Material

Dr. Steven M. Pilgrim
New York State College of Ceramics at Alfred University

Introduction

Lead Magnesium Niobate (Pb(Mg1/3, Nb2/3)O3 or PMN) is the parent perovskite
compound for a number of ceramic drive materials.  In all cases, the PMN is the majority
of the composition; however, various additional elements are added to modify the
properties.  These elements are most commonly shown as equivalent perovskite additions
(PbTiO3, SrTiO3, BaTiO3) or as site-dopants (La3+, Fe2+, etc.)  Thus, from a materials
composition standpoint they are similar to the better known Pb(Zr,Ti)O3 ceramics.

The primary addition to PMN is usually PT.  This is used to increase the Curie
temperature (material indicator of the phase transition) to meet the desired operating
temperature.  Small additions of PT (<15 mol%) provide electrostrictive materials with
use temperatures at or below 25°C.  As more PT is added the electrostrictive use
temperature increases.  With the addition of sufficient PT (nominally 35 mol%) the
material provides its best performance in a piezoelectric mode.  Both modes are used for
transducers.

Chemistry and Synthesis

PMN is a perovskite (like PZT and BaTiO3) ceramic.  Commonly formed by mixed oxide
synthesis with a columbite precursor, it follows conventional ceramic processing routes.  It
can be viewed as a face centered array of oxygen anions and A-site (primarily lead with
Ba, Sr, La dopants) with interstitial B-site cations (primarily Mg and Nb with Ti, Zr, Fe
dopants).  Depending on the dopants the materials range from pale yellow, to cream to
brown in color.  A deleterious pyrochlore phase is sometimes noted during synthesis--this
is usually bright yellow and degrades the electrical, mechanical, and electromechanical
properties of the ceramic.

The  chemical similarity with PZT results in a gross agreement of the mechanical and
physical properties.  Regardless of dopants, the PMN's are poor in tension, of high
density, and thermally stable.  Characteristic strengths range from 45 to 66 MPa with
fracture toughness values near 0.64 MPa.m1/2 (Ewart 1998).  Depending on the
composition and use temperature, they may be used as piezoelectrics or electrostrictors

9-1



The primary compositions lie in the ternary of PMN, PT with either BT, ST or lanthanum
(Yan 1989, Pilgrim 1992, Gupta 1998).  The compositions are generally: piezoelectric
(EDO and TRS; 65PMN-35PT), high-temperature (85°C EDO), electrostrictive
(Lockheed-Martin, TRS, EDO, Unilator, BM Hi-Tech; 90PMN-10PT).

Density and Thermal

The PMN-based materials have an approximate density between 8.1 g/cm3 (nominally 5%
higher than a PZT) for the electrostrictive varieties and 7.85 g/cm3 for the piezoelectric
varieties.  In thermal performance there is little difference between them and PZT.  They
have a heat capacity of ~0.35 J/g°C and generally lower thermal expansions (~2.3 ppm/
°C) (Barber 1997).  Since, when in use, the materials display ∞m symmetry there are
multiple coefficients needed to define the thermal conductivity and thermal expansions.
Specifically, the transverse properties differ from the longitudinal values.

Important Differences from PZT

Background and Origin of Effects

Electrostrictive materials in the purest sense include all materials in the world —
everything is electrostrictive.  "Electrostriction" in a material is commonly defined as a
mechanical deformation with an applied electrical stimulus.  This could be from either an
applied electric field or from an induced polarization.  Since all materials possess atoms,
ions, or molecules, or domains which are polarized or polarizable, application of an
electrical excitation distorts the charge distribution which is then coupled to distortion of
the actual dimensions.  In short, the deformation, or strain, of the material results from
distortion of the bond lengths, bond angles, electron distribution functions, or electric
dipoles with an applied electric stress.  In paraelectric, cubic materials the relationship of
strain and electric field should be perfectly quadratic if the material is a linear dielectric
(strain as the square of electric field).  However, since few materials are linear dielectrics
at high fields, the more appropriate description is based on dielectric displacement
(nominally polarization).  The electrical nonlinearity is shown in Fig. 1 for medium field
excitations.

In this case, the primary relationship of interest is between electric field E and dielectric
displacement D.  This development is well described in various texts including Nye 1979.
As shown in Eq. (1), the dielectric displacement is the sum of the polarization of free
space and the polarization of the material

D=ε0E+P Eq. (1)
where ε =the permittivity of free space (8.854 x 10-12F/m); P=polarization (C/m2).
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Figure 1.  Polarization as a function of field for a PMN-based electrostrictor.

Since polarization is also dependent on E, its relationship may be defined through use of a
dielectric susceptibility function χ, as in Eq. (2).

P=ε0χE Eq. (2)

Note that χ may be a function of E; it is not necessarily a constant for high values of E.
Combining Eqs. (1) and (2) provides a relationship between the dielectric displacement
and the applied electric field as shown in Eq. (3).

D=(ε0+ε0χ)E=ε0(1+χ)E Eq. (3)

In this case, the term (1+χ) when normalized by ε0 is commonly called the "dielectric
constant" or the "relative permittivity" of the material.  Since the term, 1+χ, is dependent
on the electric field for nonlinear dielectrics, the term "relative permittivity" is generally
preferred.  Regardless of terminology, Eq. (3) provides a functional relationship between
the induced dielectric displacement and the applied electric field which can be used to
define electrostriction.

Following the Devonshire phenomenology (1954), Gibbs Free Energy Approach, and the
experimental behavior of materials under high electric field, the most relevant operational
definition of electrostriction is the quadratic relationship between electric and mechanical
variables  (shown in Figs. 2 and 3).  This leads to Eqs. 4 and 5 when using electric field as
the drive variable and to Eq. 6 when using polarization.
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S=ME2                        Eq. (4)
S=Q[ε0(1+χ)E]2 Eq. (5)

where S is strain and E is electric field.

This is shown graphically in Fig. 2.

Figure 2.  Transverse strain as a function of field for a PMN-based electrostrictor (same
composition as Fig. 1).

On first examination, Eqs. 4 and 5 and Fig. 2 seem to state that strain is quadratically
dependent on applied electric field.  However, one must note that Eq. 5 shows the explicit
dependence of M on χ, whose nonlinearity is displayed in Fig. 1.  Thus, M is a function of
E for a nonlinear dielectric.  Secondly, since any material clearly has an upper maximum in
strain, Eq. (4) must go to a finite limit for high values of E.  Since E is unbounded, this
limitation must come through the M term.  In fact both of these effects are attributable to
the saturation of the induced polarization at high electric field values. When the field
dependence of χ, and consequently of M, is minimal, M may be considered as an effective
constant.  This simplifies the electrical engineering considerations of drive, but is not
applicable at high electric fields.

From a materials and physics standpoint, it is preferable to work with Q and D, which are
a constant and a state variable, respectively.

S=QD2 Eq. (6)
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where S=mechanical strain (dimensionless)
D=induced dielectric displacement (C/m2)
Q=electrostrictive Q coefficient (C2/m4).

This provides a view of the phenomena as shown in Fig. 3.

Figure 3.  Transverse strain as a function of polarization for a PMN-based electrostrictor
(same composition as Figs. 1 and 2).

This makes dielectric displacement (or its near equivalent, polarization) the operative
independent drive variable for generating and determining the electrostrictive strain.  A
similar class of materials (less widespread, but better known) is that of the piezoelectric
ceramics.  Typified by PZT, these materials show a primarily linear relationship (S=gD)
between strain and dielectric displacement.  However, since all materials are
electrostrictive the true relationship for piezoelectrics actually includes an electrostrictive
term (Eq. 7):

S=gD+QD2            (Eq. 7)
Under practical operating conditions for piezoelectrics, the quadratic component is
sufficiently small to be neglected or results in an acceptably low level of harmonic
generation. Under practical operating conditions for electrostrictors, the linear component
is sufficiently small to be neglected. The co-existence of both effects can be noted in Fig.
4.
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Figure 4.  Transverse strain as a function of absolute polarization for a PMN-based
electrostrictor (same composition as Figs. 1, 2, and 3).  Note M0 defines the
absolute error of the measurement.  M1 corresponds to the g coefficient of 48
mV.m/N and M2 corresponds to the Q coefficient of 0.0073 m4/C2.

For most materials, the electrostrictive effect under modest to moderately high fields (~0.1
to 5 MV/m) is very small (Sundar 1992).  The values of Q are relatively constant by
structure type.  In fact, the electrostrictive strain may be several orders of magnitude less
than the strain resulting from a 1°C temperature differential — apparently relegating
electrostriction to the realm of academic curiosity.  However, the usefulness of
electrostriction is clear from an examination of Eq. (4).  In essence, the level of
electrostriction can be improved by: a) increasing the drive field or b) increasing the M
coefficient.  Since the drive field is normally constrained by system considerations relating
to breakdown of insulation, maximum voltage of the system, or corona issues, increasing
the M coefficient is the primary avenue of approach.  Viewed in the context of Eq. 5 this
corresponds to increasing χ.   Thus, materials with large values of dielectric displacement
have much larger values of electrostrictive strain.

Note that in general the dielectric displacement and the electrostrictive coefficient are
inversely proportional.  However, since the strain has a quadratic dependence on dielectric
displacement, the presence of a large dielectric displacement in a material is desirable.
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Ideally, the best practical electrostrictor would meet a minimum of five criteria:
• it would possess a very large dielectric displacement (D)
• it would display a linear electrical response for ease of use
• it would have a large coefficient between strain and dielectric displacement field
(Q)
• it would have a high breakdown field
• it would maintain these properties over a wide range of environmental conditions.

These criteria may be extended and modified (Wilson 1985). The first and second criteria
are met exceptionally well by the ceramic capacitor materials (Herbert 1985 and Jaffe
1971). Some capacitor materials in the BaTiO3 and related perovskite families have
dielectric displacements and relative permittivities that are 1000 times those of other
materials.  Materials that meet criterion one fail on criterion two; however, the perovskites
are predictably nonlinear.  Large values of Q are apparently inconsistent with large  values
of D, since QD~constant. Large, field-induced piezoelectric strains are present in the
Pb(Zr,Ti)O3 and related perovskite piezoelectrics (Jona 1962 and Jaffe 1971) for a several
hundred degree temperature range.  Regardless, the perovskites do have high breakdown
fields (>~20MV/m).  All of the properties are somewhat temperature dependent since the
maximal response comes from the proximity of a phase transition.

Relationship between Electrostriction and  Piezoelectricity

In the preceding discussion,  we have considered electrostrictive strains as resulting from
an induced dielectric displacement.  However, in the materials which most closely
approximate the ideal electrostrictor there is often a spontaneous polarization which is
reorientable within the material, i.e., the materials are ferroelectric.  This is the case for
BaTiO3, Pb(Zr,Ti)O3, and many of the related perovskites (Jona 1962, Lines 1977, Jaffe
1971, Nomura 1981, Ikeda 1990).  This adds complexity to Eqs. 1 – 7.  Since the
materials are not isotropic in properties and the electric excitation is not limited to a single
direction, all of our previous equations must be presented in tensor form (Nye 1979).
Using the tensor forms, adding the spontaneous polarizations, and following the basic
phenomenological approach of Devonshire (1954) converts Eq. 7 to:

    
S

ij
= Q

ijkl
P

k
s P

l
s + 2Qijkl Pk

s P
l
' + Qijkl Pk

' P
l
'            (Eq. 8)

and Eq. 5 to:

  
S

ij
= Q

ijkl
P

k
s P

l
s + 2Qijkl Pk

s
lmχ E

m
+ Qijkl lmχ E

m kpχ E
p
     (Eq. 9).

Note that PS and P′ are the spontaneous and induced polarizations.  These are nearly
equivalent to the spontaneous and induced dielectric displacements since they lack only
the contribution from free space.

For materials without a spontaneous polarization (e.g., wholly nonpiezoelectric materials
and ferroelectrics in their paraelectric state and therefore PS=0) these equations may be
simplified by setting all of the PS terms to zero in Eqs. (8) and (9).  Note once again that
the Qijkl  coefficients are constants; whereas the associated Mijmp coefficients include the
field dependence of the dielectric susceptibility.
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In piezoelectric materials, PS is nonzero; the piezoelectric coefficients, e.g., glij , can be
equated with specific functions of the general Eqs. (8) and (9) as shown in Eq. (10) for the
effective piezoelectric coefficient glij :

∂Sij

∂Pl
' = 2Qijkl Pk

s + 2Qijkl Pk
' = glij

      Eq. (10)

Since Qijkl =Qjikl  from the energy constraints on strain and Qijkl =Qijlk  from the independent
nature of the applied polarizations, Eq. 10. actually incorporates a great deal of
information.  Note that Qijkl  are not tensors of the same form as the stiffness or compliance
(stiffness and compliance lack the equivlance between the ‘ijkl’ and ‘ijlk’ terms).  This
gives the change in strain component Sij  with induced polarization as referred to the
material state absent all spontaneous and induced strains.  The effective strain is in fact the
sum of two parts: a strain resulting from the spontaneous strain and one resulting from an
induced polarization in the material.

Examining Eq. 10 shows clearly that the true piezoelectric coefficient is directly related to
the electrostrictive Q coefficient by Eq. (11a and 11b).  Eq. 10 also gives the contribution
to the coefficient from the spontaneous polarization—for piezoelectrics this is the
remanent polarization.  The associated strain is the dimensional change accompanying
original poling.

    

∂S
ij

∂P
l
'

= glij  Eq. (11a) glij = 2Qijkl Pk
' Eq. (11b)

Thus via phenomenology and the attendant energy considerations, the origins of
piezoelectricity clearly lie in electrostriction.  However, since this awareness of the joint
origin of the two effects is relatively recent there are significant differences in notation and
convention.  Following the IEEE standards of 1987, the polar axis for a piezoelectric is
assigned to the '3' or z-axis.  Thus for a piezoelectric ceramic the coefficients are g333,
g311=g322, g113, and g232.  Since the first two subscripts come from the strain, these are
usually contracted following the convention: 11 to 1, 22 to 2, 33 to 3, 23 to 4, 13 to 5 and
12 to 6.  This gives the familiar four coefficients: g33, g31=g32, g15, and g24.  The
convention for electrostrictors is different from this.  In the electrostrictive case, the
polarized axis is usually given as the '1' or z-axis.  Since only one polarization is typically
applied (the one along the z-axis, this results in only four Q coefficients for an
electrostrictive ceramic: Q1111, Q2211=Q3311, Q1211=Q1311=Q2111=Q3111, and
Q2311=Q3211.  These are the longitudinal, transverse and two shear components,
respectively.  Contracting the strain subscripts and reducing the polarization subscripts to
a single value yields Q11, Q12, Q16, and Q14 (note that the subscripts are permutable in
pairs).  These Qij 's are direct analogs to the piezoelectric g coefficients listed above.

By convention, the longitudinal coefficient relating a uniaxial strain to a parallel electric
excitation for piezoelectrics is a '33' coefficient whereas that for an electrostrictor it is a
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'11' coefficient.  The transverse components are '31' and '12' for piezoelectrics and
electrostrictors, respectively.

In summary, electrostriction and piezoelectricity are fundamentally similar effects.
Materials primarily exhibiting one effect may be superior to the other for a given
application (see Yamashita 1996).

Relaxor Nature of PMN-based Electrostrictors

Since a large induced polarization over a wide range of temperatures is vital to generating
a practical, electrostrictive strain, capacitor materials were obvious choices for
electrostrictors.  In particular, the class of relaxor ferroelectrics has special appeal.  As
ferroelectrics they possess a paraelectric high-temperature phase and a piezoelectric low-
temperature phase (Lines and Glass). However, their behavior is significantly different
from other ferroelectrics in three important ways: the peak in the permittivity versus
temperature curve is frequency dependent (Fig. 5), the peak is broad and diffuse (Fig. 5),
and the dielectric loss is frequency dependent.  These departures from normal ferroelectric
behavior were first noted by Smolenskii and Isupov when considering the relaxors for
capacitor uses (Smolenskii 1958, Isupov 1956).  Cross further details the behavior and
origins of relaxor ferroelectrics (1987).
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Figure 5.  Weak-field dielectric response of a PMN-based electrostrictor showing the
frequency dispersion and decrease in permittivity with increasing frequency (after
Pilgrim 1992).
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Following Smolenskii (1958) most explanations of relaxor behavior turn on the presence
and ordering of micropolar or microheterogeneous regions within a perovskite (Reinecke
1977, Chen 1989, Viehland 1990).  The details of these approaches and explanations fall
outside our subject; however, the characteristics and outgrowths of the relaxor behavior
are important.  They will be discussed as typical properties.

Summary of Practical Differences Between PZT and PMN-based Materials

In a previous chapter, the performance of the various Navy piezoelectrics has been
presented in detail.  The properties of the PMN-based materials are very similar to those
of the piezoelectrics for mechanical and thermal properties.  The primary differences are in
the electromechanical response of the materials.  These arise from: the proximity of the
use temperature and the transition temperature (Tmax), the basic differences in mechanism,
and the present state of PMN development.  In approximate terms, the important
electromechanical relationships are shown in Table I.

Table I. Electromechanical Properties of Electroactive PMN Ceramics
PMN

electrostrictor
PMN

piezoelectric
(EDO)

Tmax or Curie Temperature(°C) 25-40 170
Longitudinal  Strain
(ppm@1MV/m)

1000-1200
(M11E1)

730 (d33)

Transverse Strain
(ppm@1MV/m)

-400 (M21E1) -312 (d31)

Relative Dielectric Constant (RT
@ 1 kHz)

K3
T 8,000-25,000 5500

Dissipation factor (%) DF; tanδ 1-3 2
Mechanical Q Qm 100 70
Coupling (k33) k33 0.55 0.72
Coupling k31 0.25 0.35
Hysteresis (strain / field) <3% Not reported
Modulus (MPa @ 0.5 MV/m) Y33

E 70-90 55

Frequency Constant (Nt kHz-in) ~50 71
Aging (per time decade in K3

T ) Not applicable 1.5%

Aging (per time decade in Nt) Not reported 0.4%
Aging (per time decade in k33) Not applicable 0.4%
Piezoelectric constant
(mV.m/N)

g33 Minimal 15.6

Piezoelectric constant
(mV.m/N)

g31 Minimal -6.4

Electrostrictive constant (m4/C2) Q1122 -0.65 x 10-3 Not
applicable

Electrostrictive constant (m4/C2) Q1111 1.7 x 10-3 Not
applicable
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(major references Zhang 1989, EDO 1998, Gupta 1998, Pilgrim various)

Note that as the Tmax approaches the use temperature the temperature dependence of the
listed properties will increase.  It will also be more difficult to utilize the properties at
higher electric fields without field-induced changes.  The electrostrictive compositions are
operated very near their Tmax values.  This results in improved strain and hysteresis
properties (see subsequent sections); however, it also restricts optimal response to specific
temperature and stress regions.

PMN Compositions

As described above, the PMN materials are presently made in two distinct types:
piezoelectric and electrostrictive.  The piezoelectric compositions (EDO Western) are
used principally as higher strain analogs of Pb(Zr1-xTix)O3.  They have lower Tmax values
and higher strains.  Their base composition is a solid solution of ~65% Pb(Mg1/3Nb2/3)O3
with ~35% PbTiO3; this provides advantages for some applications.

However, the majority of makers are involved in electrostrictive compositions (EDO,
Lockheed-Martin, TRS Ceramics, and Unilator).  These materials have the requisite
induced polarizations with adequate Q coefficients and a range of temperature dependent
properties.  Specifically, most interest in electrostrictors for practical use has centered
around ceramics based on solid solutions of ~85 to 93% Pb(Mg1/3Nb2/3)O3 as a solid
solution with ~15 to 7% PbTiO3 and various other perovskite additions (nominally 1 to
5%) (BaTiO3, SrTiO3) or dopants, lanthanum, europium, gadolinium, etc.  These
materials may also include a variety of dopant packages, analogous to those used for
piezoelectric ceramics, to improve properties  (Jang 1979, Uchino 1981, Uchino 1986,
Wheeler 1991, Winzer 1989, Takeuchi 1990, Pilgrim 1992).  They are primarily described
by their acronyms:  PMN for Pb(Mg1/3Nb2/3)O3, PT for PbTiO3, ST for SrTiO3, and BT
for BaTiO3, Each of these systems has particular advantages from both practical and
performance standpoints.

The solid solutions display relaxor behavior to varying degrees (Jang 1978, Yan 1989a,
Yan 1989b, Pilgrim 1992).  Of these base systems, the PMN-PT one has been more easily
and reliably reproduced.  It also blends the low-transition PMN with the high-transition
PT to conveniently yield transition temperatures near room temperature.  Further selection
of suitable perovskite additions to control other characteristics of performance have
concentrated on BT and ST for the PMN-PT systems (Uchino 1986, Wheeler 1991,
Winzer 1988).

Lockheed Martin, as a successor to Martin Marietta Laboratories, has developed a
sequence of "Generations" of PMN based electrostrictors (Generation 4 is under
development in 1998).  These are PMN-PT-BT materials or PMN-PT-ST materials.
Lockheed Martin materials have compositions given by a seven character code.  This
follows the composition (1-y)[(1-x)PMN-xPT]+yRT.  The composition code leads with a
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letter: ‘B’ or ‘b’ if RT is BaTiO3 and ‘S’ or ‘s’ if RT is Sr TiO3. Thus a B250141 would be
0.975[0.859PMN-0.141PT]-0.025BT.

Material Properties

From a practical point-of-view the parameters and properties which are most important to
actual application of an electrostrictor are those related to the frequency and temperature
dependence of the energy use, energy conversion, and induced strain.  For actual material
or device selection these important parameters should be quantified under use conditions.
However, they are often improperly extrapolated from different test conditions.  Proper
test conditions for the materials are vital to predicting the behavior of resulting devices
(Carlson 1987, Winzer 1988, Hom 1994, Brown 1996).  One must remember that the
relaxors do not show a linear response with applied field, nor are their properties
independent of frequency.

Typical properties used to characterize electrostrictive materials for quality control
include: density, phase purity, weak-field peak permittivity, and weak-field dielectric loss,
temperature of maximum permittivity (Tmax), and diffuseness.  These are important to the
response of the electrostrictive material, but may not be indicative of the material's actual
performance in a device.  Density is usually determined from an x-ray powder diffraction
pattern following standard procedures (Snyder 1992).  This gives densities of
approximately 8000 kg/m3.  Phase purity is also generally determined from the x-ray
pattern by ratioing the intensities of the primary perovskite peak to the sum of the
intensities of the primary perovskite and pyrochlore peaks.  This provides a rough guide to
the pyrochlore level; however, the ideal material will be a phase pure perovskite, i.e., no
pyrochlore.

Weak-field Properties

Weak-field or dielectric properties, relative permittivity, dielectric loss, and Tmax are
determined directly from automated measurements of dielectric behavior as functions of
temperature and frequency (see Fig. 5).  These are frequently termed 'Curie' runs and are
typically conducted while cooling the material at 1 to 4°C/min in an automated system.
Values corresponding to the important points on the curve are then determined (Tmax is the
temperature of maximum permittivity, typically taken at 1 kHz).  Diffuseness, δ , is also a
dielectric parameter; however, its derivation from Fig. 5  is more involved.  Beginning
with the supposition that relaxors could be considered as an assemblage of individual,
normal ferroelectrics, Smolenskii (1958) defined the diffuseness parameter, δ according to
Eq. 12.  Smolenskii also set forth a power law approximation which was valid when δ
>>T-Tmax  as shown in Eq. 13.  The diffuseness characterizes the breadth of the diffuse
phase transition in a reproducible and quantifiable way.  However, improper use of Eq. 13
has, as outlined by Pilgrim (1990), resulted in doubtful conclusions regarding the effects of
specific dopants, compositions, and grain sizes on the weak field properties of relaxors.
Overall, Eq. 12 is preferred.
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As a summary of the weak-field dielectric properties for various recent PMN-PT materials
see Table II.  Additional details for a wide variety of recent material compositions made
under reproducible conditions are available in the literature.
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Table II. Weak-field Properties of the Lockheed-Martin Generation 3 Materials
Sample Tmax (°C) Kmax @ Tmax Loss Tangent @

Tmax

b300100 - pellet
                     - plate

22.5
24.3

22083
22089

0.0413
0.0425

b250090 - pellet
                     - plate

20.3
21.7

21307
19845

0.0426
0.0392

b250075 - pellet
                     - plate

13.6
16.1

21790
20167

0.0442
0.0417

s250075 - pellet
                     - plate

8.2
8.3

19019
19811

0.0385
0.0413

s250090 - pellet
                     - plate

15.6
15.9

19930
21916

0.0400
0.0444

s400090 - pellet
                    - plate

3.4
5.1

22994
17419

0.0404
0.0385

s400110 - pellet
                    - plate

14.3
17.6

18597
15131

0.0375
0.0314

b500100 - pellet
                     - plate

16.6
18.7

17492
18908

0.0392
0.0408

From MML TR 92-23c, “Development of Advanced Active Sonar Materials and Their
Microstructure / Property Relations,” Martin Marietta Laboratories under N66001-91-C-
6012 (1991).

Additional data to show the possible variations in weak-field properties can also be found
in Table III.
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Table III. Weak-field dielectric properties of PMN-PT-BT, ST compositions.

Sample K@25°C D@25°C K@Tmax D@ Tmax Tmax (°C) Tmax (°C)
@ 1 kHz @ 1 kHz @ 1 kHz @ 1 kHz @ 5 Hz @ 1 kHz

B200120 10359 0.0190 24983 0.0327 41.1 41.7

B125650 23103 0.0239 23390 0.045 10.7 17.9

B125775 16738 0.0197 22579 0.0394 14.3 21.6

B125900 13499 0.0199 22829 0.0276 24.0 30.6

B250115 17003 0.1127 18089 0.0835 26.7 32.8

B250141 12648 0.0746 19723 0.0385 38.0 45.0

B250640 19399 0.0083 21550 0.046 4.0 12.0

B250900 15065 0.0201 21316 0.035 14.5 16.9

S200120 14861 0.0671 17113 0.035 27.9 33.9

S125650 17679 0.0079 19434 0.0422 3.8 10.0

S125775 20610 0.0225 21191 0.0447 8.3 16.7

S125900 22186 0.0747 23100 0.048 18.8 27.3

S250115 17460 0.0347 17519 0.0396 11.8 19.8

S250141 16033 0.0708 18003 0.0353 30.3 38.1

S250640 14485 0.0017 19089 0.0446 -4.2 3.6

S250900 16063 0.0092 17229 0.0398 1.8 10.8

N910900 13008 0.0743 16476 0.0354 29.1 35.9
From MML TR 90-66c,  “Electrostrictors for Active Sonar, Martin Marietta Laboratories
under N00014-89-C-2357 (Oct 1990).
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In general, the weak-field dielectric properties can be scaled to the desired frequency of
use.  This process is shown in Fig. 6.
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Figure 6.  Frequency dependence of Tmax for various PMN-PT-BT, ST compositions.
From MML TR 90-66c,  “Electrostrictors for Active Sonar,” Martin Marietta
Laboratories under N00014-89-C-2357 (Oct 1990).
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High-field Properties

Weak-field properties are ideal for quality control during manufacturing and as necessary
checks on the performance of devices.  However, they are not sufficient to characterize or
predict the performance of a relaxor electrostrictor at high electric fields.  This requires
measurement of polarization and strain as functions of applied electric field.  Typically
these measurements are made at low frequency (~0.1 to 500 Hz) for applied fields of 1
MV/m at various temperatures (see Figs. 1, 2, 3).  Salient features of such measurements
are: the peak polarization, peak strain, and the average hysteresis.  The peak values are
those at maximum positive excitation, with peak strain usually taken as the maximum
positive strain.  These are obtained with minimal data reduction.  Average hysteresis
denotes the average separation of the increasing and decreasing arms of the loop
normalized by the maximum response.  Thus, the product of Have for polarization and the
maximum  field-excitation is directly proportional to the energy loss on cycling.   Have is
defined for both y-variables, polarization and strain, via Eq. (14).

Have =
i
decy −

i
incy

 
 
  

 
 

i=1

n
∑

n
• 100

ymax  Eq. 14

The coefficient M12 can also be determined from the instantaneous slope of Fig. 2 while
the coefficient ε11 is the instantaneous slope of Fig. 1.  Q12 can be determined from the
data shown in Fig. 4 as shown in the inset or from Fig. 7.  Note that each arm of the loop
generates a single line.  For an ideal electrostrictor, all four lines will be collinear.
Deviations from the fit line as shown in Fig. 8, indicate the presence of piezoelectric
components or errors in determining the zero origin.

9-17



Figure 7.  Method for determining the Q12 as the slope.

Figure 8.  Enlargement of the intercept region from Fig. 7, illustrating the close fit.
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Another way to view the electromechanical performance is by determining the data of
Figs. 1 and 2 as a function of temperature.  This generates a sequence of curves as shown
in Fig. 9.
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Figure 9. Longitudinal strain vs Electric Field with temperature for a modified B400090
(PM-3).  Note that contrary to convention, all strain is included as positive (from
Bridger 1998).
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For better visualization, the peak strain values and the corresponding hysteresis values can
be combined to provide a materials selection chart (see Fig. 10 and Figs. 11-14).
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Figure 10.  Schematic determination of lower and upper use temperatures  (LUT and

UUT) from electromechanical data.

Essentially, the LUT is fixed by the increase in either the strain or polarization hysteresis
associated with the transition of most of the material to piezoelectric behavior.  A second
potential LUT occurs at the temperature defined by the increase in the dielectric loss.  It is
expected that these LUTs are relatively close together; however, this has not been
completely verified.  The LUT defined by strain has been shown to occur at or below the
LUT defined by polarization; the dielectric loss LUT is generally higher than either of the
other two.  The LUT has been defined by an increase of 50% in the average polarization
or strain hysteresis between two successive 5°C temperature steps measured at the desired
frequency.  The upper use temperature (UUT) is set by the reduction in strain below the
acceptable threshold or by the onset of an increase in dielectric loss from conductivity
(analogous to that found in traditional piezoelectrics).  Since there is no qualitative lower
limit on strain, and strain decreases relatively smoothly with increasing temperature, the
UUT is set by the application.

This performance of strain with temperature may also be a function of frequency, although
it is difficult to separate the frequency effect from the effect of heating—both result in
behavior as shown in Fig. 11.
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Figure 11.  Frequency dependence of electromechanical properties of Lockheed Martin
Generation 2 S250141 (from Pilgrim 1993).

The performance of the materials is also composition dependent.  This is shown in Figs.
12, 13, and 14 for the Lockheed-Martin ‘Generation 3’ materials.
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Figure 12.   Induced strain and hysteresis for Lockheed Martin Generation 3 S250075
composition (1 Hz) (from Pilgrim MML TR 92-2c (1992)).
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Figure 13.   Induced strain and hysteresis for Lockheed Martin Generation 3 S250141
composition (1 Hz) (from Pilgrim MML TR 92-2c (1992)).
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Figure 14.   Induced strain and hysteresis for Lockheed Martin Generation 3 B250051
composition (1 Hz) (from Pilgrim MML TR 92-2c (1992)).
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Aging of Properties

Figs. 12-14 from “Development of Advanced Active Sonar Materials and Their
Microstructure / Property Relations”  MML TR 92-2c N66001-91-C-6012 (Jan 1992).
In addition to the temperature and expected compositional dependence, some researchers
have noted time varying responses in both the weak- and high-field behavior of the
perovskites and electrostrictors (Schulze 1988, Pan 1989, Sutherland 1990, Leary 1998).
These 'aging' effects occur in both the high-field and weak-field properties.  The effect is
noted by the decrease in the material response with time.  This is shown in Figs. 15 and
16, for high- and weak-fields respectively.  The ‘aging’ phenomenon can be prevented
with proper processing and care (Sutherland 1990, Ritter 1994).
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Figure 15.  High-field aging in a PMN-PT-ST at 1 Hz after 5 days (from Leary 1998).
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Figure 16.  Weak-field aging in a PMN-PT-ST at 1, 10, and 100 kHz after 5 days (from
Leary 1998).
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Universal Properties Based on Reduced Temperature

In the absence of aging, the materials show remarkable unity of response, i.e., Figs. 12, 13,
and 14 and the other Lockheed Martin Generation 3 materials can be overlaid if the
response is plotted versus reduced temperature.  This is shown in Figs. 17, 18, 19, and 20
for the Lockheed Martin Generation 3 materials.  Note that in all cases the Tmax for 1 kHz
has been used.  Substitution of the frequency-corrected Tmax further improves the results.

Figure 17.  Polarization commonality for Generation 3 Lockheed Martin materials (from
N66001-91-C-6012).

Figure 18.  Polarization hysteresis commonality for Generation 3 Lockheed Martin
materials (from N66001-91-C-6012).
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Figure 19. Transverse microstrain commonality for Generation 3 Lockheed Martin
materials (from N66001-91-C-6012).

Figure 20.  Transverse microstrain hysteresis commonality for Generation 3 Lockheed

Martin materials (from N66001-91-C-6012).
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Electromechanical Qijkl

Data as shown in Figs. 17-20 can be used to determine the electromechanical Qijkl .  In the

transverse case, this yields the Q12 values if the instantaneous strain is divided by the

square of the instantaneous polarization.  More commonly, the peak strain is divided by

the square of the peak polarization to yield a “Qeff”. Thus, Qeff (Eq. 14 and Eq. 15)

includes any piezoelectric components of the strain response and is not a true measure of

transverse Q (Q12).  Equation 14 shows the effective response of the material as the sum a

true piezoelectric portion (from ‘g’) and the underlying electrostriction.  The magnitude of

the piezoelectric contribution is scaled by ‘x’, the fraction of the material that shows

piezoelectric activity.  Above the transition, ‘x’ should be zero and the material should be

electrostrictive.  As the transition is approached ‘x’ should increase and Qijkl  should

diverge from Qeff.  As shown in Fig. 21,  Qeff is constant for measurements at 1 Hz.

However, (the 'knee' temperature) and Qeff are apparently frequency dependent.  This is

shown for an S250141 plate, Lockheed Martin Generation 1 material in the figures.

The change in Qeff is more abrupt and distinct than the change visible in either the strain or

polarization plots.  In general,  Qeff increases in magnitude at lower temperatures.  This

effect is more pronounced at lower frequency.  This effect has been attributed to the onset

of piezoelectric contributions and to heating in the Generation 1 materials (Pilgrim 1992).

ε ij = xgkij Pk + Qklij PkPl = Qeff Pk Pl (Eq. 14)

where
xgkij

Pl
+ Qklij = Qeff (Eq. 15)

The piezoelectric g, leftmost term in Eq. 15,  should become more important at lower

frequency for a given temperature, since the soft piezoelectric regions can pole during the

measurement.  For relaxors with broad phase transitions a portion of the material can be

piezoelectrically activated at corrrespondingly high temperatures.  Consequently, there will

be a piezoelectric contribution (xg/P) to Qeff at low frequency.  This contribution should

increase the magnitude of Qeff, shift the 'knee' to higher temperatures, and broadens the

transition.
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Figure 21.  Frequency effects on Qeff for a Lockheed Martin Generation 1 S250141 on

the field interval 0-0.5 MV/m (adapted from Pilgrim 1992 and “Development of

Advanced Active Sonar Materials and Their Microstructure-Property Relations”

MML TR 91-33c N62190-91-M-0322 (June 1991)).

This effect is another manifestation of the piezoelectric contribution noted in Fig. 2.

However, the frequency dependence is not necessarily a general phenomenon in the PMN-

materials under all conditions of temperature, field, and frequency.  In fact, the diminishing

effect at higher frequencies suggests that the frequency dispersion would be less at higher

temperatures.  This has been confirmed for the Lockheed Martin Generation 3 materials

(Fig. 22).  Note that the frequency dependence has been wholly removed by using reduced

frequency as the x-axis—this leaves a frequency independent Qeff.

9-27



0

0.002

0.004

0.006

0.008

0.01

0.012

-60 -40 -20 0 20 40 60

REDUCED TEMPERATURE [T-Tmax(f)] (°C)

Qeff 500
Qeff 250
Qeff 100
Qeff 10 

Figure 22.  Effective electromechanical Q for a Lockheed Martin Generation 3 B300100

(from MML TM 93-01 N66001-91-C-6012).

Electromechanical Coupling

Determination of electromechanical coupling in electrostrictors is based on the same

principles as for piezoelectrics (Berlincourt 1968, Tsuchiya 1981, IEEE 1987).  However,

the frequency dependence,  field dependence and need for a bias field make it more

difficult to experimentally determine the appropriate coefficients.  Direct application of the

IEEE equations, results in an underestimation of the coupling coefficient (c.f. Kelly 1997).

This arises from neglecting the electrostrictive terms and also from the frequency

dependence of the properties.  Despite these limitations, the IEEE standard equations can

be modified to determine coupling (see Eq. 16 from Hom 1994).

( ) ( )( ) ( )( )k
kQ P

s P P P P h

B

P
B

P P
P P s B s k

P
P

s B

s B

o B

S

33
2 3333

2 4

3333

2 21
=

+ − ++
−ln ln arctanε

       (Eq. 16)

where the ‘P’ values are determined from the polarization response, ‘k’ is permittivity, ‘s’

is stiffness and ‘h’ is an empirical fit parameter.  Application of this model yields the

characteristic coupling for electrostrictors (Figs. 23 and 24).  This constitutive approach

accommodates the nonlinearities and the prestress dependence.  It can be extended to

predict the stress and modulus of the materials (Brown 1996, Hom 1994, Hom 1994).

Alternative models to those of Hom are also available (Piquette 1997 and Robinson 1996).

A modified method based directly on the energy balance can also be applied—this is more
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convenient to determine, but provides equivalent results to Hom 1994 (see Fig. 25 from

Leary 1997).  Quasistatic measurement of coupling may also be done in-situ (Janus 1997).
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Figure 23. The quasi-static coupling coefficients versus applied electric field for

Lockheed Martin Generation 3 b250077 PMN at 5oC without bias voltage
or prestress (Hom 1994).
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Figure 24. The longitudinal coupling coefficient versus applied electric field for

Lockheed Martin Generation 3 b250077 PMN at 5oC without bias voltage at
various levels of compressive pre-stress (Hom 1994).
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Figure 25. Coupling as a function of ac drive field at room temperature for a Lockheed
Martin Generation 2 PMN-PT-ST (after Leary 1997).

Stress Effects

Although a great deal of work has been done, there are few complete data sets available.
Three of the more complete are in Rittenmyer 1998, Janus 1997, and Brown 1996.  Figs.
26, 27, 28, 29, 30, 31, and 32 are taken from Janus 1997.  While the specific values and
critical temperatures of electrostrictive PMN’s will vary with composition, the general
behaviors are anticipated to remain constant.
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Figure 26. from R.S. Janus, M.B. Moffett, and J.M. Powers, “Large Signal
Characterization of PMN-PT-Ba (90/10/3),” NUWC-NPT Reprint Report 10,860
(1997). [Lockheed Martin Generation 3 B300100].
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Figure 27. from R.S. Janus, M.B. Moffett, and J.M. Powers, “Large Signal
Characterization of PMN-PT-Ba (90/10/3),” NUWC-NPT Reprint Report 10,860
(1997). [Lockheed Martin Generation 3 B300100].
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Figure 28. from R.S. Janus, M.B. Moffett, and J.M. Powers, “Large Signal
Characterization of PMN-PT-Ba (90/10/3),” NUWC-NPT Reprint Report 10,860
(1997). [Lockheed Martin Generation 3 B300100].
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Figure 29. from R.S. Janus, M.B. Moffett, and J.M. Powers, “Large Signal
Characterization of PMN-PT-Ba (90/10/3),” NUWC-NPT Reprint Report 10,860
(1997). [Lockheed Martin Generation 3 B300100].
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Figure 30. from R.S. Janus, M.B. Moffett, and J.M. Powers, “Large Signal
Characterization of PMN-PT-Ba (90/10/3),” NUWC-NPT Reprint Report 10,860
(1997). [Lockheed Martin Generation 3 B300100].
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Figure 31. from R.S. Janus, M.B. Moffett, and J.M. Powers, “Large Signal
Characterization of PMN-PT-Ba (90/10/3),” NUWC-NPT Reprint Report 10,860
(1997). [Lockheed Martin Generation 3 B300100].
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Figure 32. from R.S. Janus, M.B. Moffett, and J.M. Powers, “Large Signal
Characterization of PMN-PT-Ba (90/10/3),” NUWC-NPT Reprint Report 10,860
(1997). [Lockheed Martin Generation 3 B300100].

Harmonic Effects and Considerations

The electrostrictors produce strain at a doubled frequency; however, the materials are

usually run with an applied dc-bias which results in unipolar excitation.  This is shown in

the preceding figures and in Figs. 33 and 34 (Leary 1998).

9-37



-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
150

160

170

180

190

200

210

220

230

240

250

Elec. Field [kV/mm]

P
ol

ar
iz

at
io

n [
m

C
/m

^2
]

              

-0 4 -0 3 -0 2 -0 1 0 01 0 2 0 3 0 4
-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

T
ra

n
sv

e
rs

e 
M

ic
ro

st
ra

in

Elec. Field [kV/mm]

Figure 33 and Figure 34.  Polarization and strain as a function of applied ac field for a

Lockheed Martin Generation 2 PMN-PT-ST.  The dc bias field (= 0.7 kV/mm)

was subtracted from the field values (after Leary 1997).

In a transducer, the amplitude of the harmonics will be reduced through the action of the
shell or radiator.  In practice an optimum bias level must be selected for each
material/transducer pair to ensure that harmonic distortion is below the acceptable
threshold.  Since the deviations from linearity are comparable to existing piezoelectrics
this has not proven to be a major problem.  Passaro in Winzer 1994, shows that Lockheed
Martin Generation 3 materials had 3rd harmonics that were more than 35 dB down for a
bias of 0.7 MV/m and drive amplitudes of 0.5 MV/m (~225 transverse microstrain @1
kHz).  The comparative value for Morgan Matroc PZT-8 (Navy III) was –54.5 dB at zero
bias and 5MV/m drive amplitude (~110 transverse microstrain @ 1 kHz).  The electrical
and mechanical powers stay in phase under unipolar use (see Fig 35 from Leary 1997).
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Figure 35.  Electrical and mechanical power signals for dc biased case. [Lockheed Martin
PMN-PT-ST Generation 2 from Leary 1997].
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Mechanical Q and Imittance Behavior

The mechanical Q of the materials is illustrated in Fig. 36.  There is some bias-field

dependence.  The minimum in the Qm curve corresponds to the broad transition from

electrostrictive to piezoelectric behavior
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Figure 36.  Mechanical quality factor (Qm) for a B200120 sample. “Development of
Advanced Active Sonar Materials and Their Microstructure / Property Relations”
[from Pilgrim  et al. MML TR 92-2c N66001-91-C-6012 (Jan 1992)].
References

Under bias conditions, the electrostrictive compositions mimic the familiar behavior of
piezoelectrics (IEEE 1987).  There is some variation in the electrical response of the
materials with bias field and amplitude.  However, this effect is quantifiable and does not
lead to the generation of undesirable harmonics.  There is some movement in the
resonance frequency with bias as noted in Fig. 37 from Leary 1998.
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Figure 37.  Resonance behavior of a PMN-PT-ST with dc-bias field. [Lockheed Martin
Generation 2 from Leary 1998].

Transducer Performance

Early transducer performance is reported in Pilgrim 1993 wherein a Lockheed Martin
Class IV single shell flextensional bested an equivalent Navy III transducer by >5 dB SPL
across the band 1 to 4 kHz.  Additional details of these tests are available in NRL USRD
1991.

More recently another single shell Class IV transducer was built and modeled with
FlexT5.6 using ceramic properties of Lockheed Martin Generation 2 PMN (properties as
those in the LBVDS testbed array).  The actual material was coated in an attempt to make
it suitable for transducers—it came from a rejected lot originally.  The modeled results
predicted that the transducer should develop a transmit voltage response (TVR) of 127 dB
re 1 µPa @ 1 m per V. The model and actual TVR’s are shown in Fig. 38 (from Bridger
1998).

The test series consisted of a free field measurement to determine the driving properties of
the material at low level compared with those predicted.  The TVR was measured at a
drive level of 200 Vrms, with 3800 VDC bias (0.7 MV/m), for a depth of 30 ft.  The
measured resonant frequency (5300 Hz) agrees with the predicted value,  but the
measured Q, taken from the 3 dB down points, (5.2) was lower than predicted (6.4)
giving the curves a slightly different shape.  Both measured and predicted Q values are
higher than usual for PMN-based 4.5-kHz transducers.  The enhanced Q is most probably
due to the smaller radiating area of the single shell — giving rise to low radiation loading
on the transducer compared to the normal double-shell transducer.
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Figure 38.  Measured and predicted TVR’s of the transducer using surface modified
PMN-PT-BT (from Bridger 1998).

The results and model predict that a full 4.5-kHz transducer would have a TVR of 138 dB
re 1 µPa@ 1 m per V which is about 1 dB lower than the units currently in the LBVDS
testbed array and about 2 dB lower than a Generation 3 PMN transducer.  These results
show not only the promise of PMN electrostrictors, but suggest that with better
understanding further improvements in performance may be possible.

Summary

The PMN materials have demonstrated potential and promise as improved transducer
materials.  They broaden the range of design options by providing a mix of properties
unavailable in traditional piezoelectrics.  Although some outstanding transducers have
been made, the present state of understanding and processing require improvement.

Typical properties are: 1000 microstrain on the interval 0-1 MV/m with a coupling of 0.5;
high-field electrical impedance ~5 times that of traditional piezoelectrics, gracefully and
repeatably changing with temperature, frequency, and prestress; recoverable change of
properties with temperature

As caveats, the user MUST remember that PMN’s are not direct replacements for
traditional piezoelectrics.  They are distinct materials with different electromechanical
behaviors.  This difference is most obvious in the electromechanical response behavior of
the electrostrictive materials with changes in bias field, drive level, frequency, and
prestress.  In addition, the knowledge base for reproducible and reliable processing is still
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emerging.  The ‘rules-of-thumb’ for traditional piezoelectrics, both processing and use, do
not wholly apply—the new rules are still under development.  Despite this lack of
maturity, the majority of PMN-based transducers have demonstrated improved
performance when compared to traditional piezoelectrics.
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Chapter 10 
 
Rare Earth Magnetostrictive Materials 
 
Dr. Arthur E. Clark 
Art Clark Associates 
 

Many magnetic materials containing the elements Ni, Co, and Fe are magnetostrictive.  
In addition, there are a large number of rare earth containing alloys that are also 
magnetostrictive.  In these rare earths, the magnetic properties arise from a highly magnetic 
anisotropic electron configuration situated deeply within the atoms.  The electron shells are 
strongly coupled to the crystalline lattice and in the presence of a magnetic field can give rise to 
very large saturation magnetostrictions and magnetomechanical coupling factors.  Because of 
their unique properties, as well as their relatively recent introduction in production quantities, the 
rare earth materials warrant a separate chapter in this handbook. 

 
There are three important classes of magnetostrictive materials containing rare earths.  

All three classes contain the elements Tb and Dy: (1) Tb1-xDyx alloys, (2) Tb1-xDyxZn alloys and 
(3) Tb1-xDyxFe2 alloys. The first two classes possess giant saturation magnetostrictions (> 2000 
ppm) but are magnetic only at cryogenic temperatures.*  The third class also possesses giant 
saturation magnetostrictions; however, this magnetostriction persists at room temperature and in 
some alloys at temperatures as high as 250oC.**  Table 10-1 lists the magnetic ordering 
temperatures, magnetizations and intrinsic saturation magnetostriction constants for Tb and Dy 
materials in these three classes.  In this handbook only the alloys of class (3) will be reported.  In 
Table 10-2, the room temperature saturation magnetostrictions of some rare earth-iron 
polycrystal materials are listed and compared with the magnetostrictions of the elements Ni, Fe, 
and Co.  Rare earth alloys with negative magnetostrictions, such as SmFe2, will not be discussed 
in this handbook. 
*  Clark, A. E., M. Wun-Fogle, J. B. Restorff, and J. F. Lindberg, IEEE Trans. on Magnetics, 
MAG-28, 3156 (1992); Clark, A. .E., J. P. Teter, M. Wun-Fogle, J. B. Restorff, and J. F. 
Lindberg, IEEE Trans. on Magnetics, MAG-31, 4032 (1995). 
** Clark, A. E. and D. N. Crowder, IEEE Trans. on Magnetics, MAG-21, 1945, (1985). 

 
The most highly investigated rare earth alloy to date is Tb1-xDyxFe2-y  with 0 ≤ x ≤ 1.0 

and 0 ≤ y ≤ 0.1 (Terfenol-D).  In this alloy, the large saturation magnetostrictions of Tb and Dy 
have been combined in order to minimize the magnetic anisotropy and hysteresis. Table 10-3 
displays the signs of the magnetostriction and magnetic anisotropies of the magnetostrictive rare 
earth elements.  Tb1-xDyxFe2-y, Tb1-xHoxFe2-y and TbuDyvHowFe2-y (u+v+w=1) have 
compensating anisotropy signs and are acceptable transducer materials. The major portion of this 
section focuses on Terfenol-D, Tb1-xDyxFe2-y with x ≅ 0.7, a highly magnetostrictive alloy 
optimized for room temperature transduction.  Some details concerning the Tb1-xHoxFe2-y and 
TbuDyvHowFe2-y alloys will be given in section 10.7. 
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Table 10-1.  Magnetic and Magnetostrictive Properties of Tb and Dy Materials. 
 
 TC            

(K) 
µoMs,T→0 
(Tesla) 

Magnetostriction   
λΤ→0 
(10-3) 

Tb atom 
density 
(atoms/nm) 

Magnetic 
Easy Axis 

Tb 230 3.3 λγ,2  = 9.6 31.3 [10-0] (b-axis)
Dy 179 3.6 λγ,2  = 9.4 -- [11-0] (a-axis) 
      
TbZn 204 2.2 3λ100/2 = 6.0* 21.9 [100][110] 
DyZn 140 2.3 3λ100/2 = 6.5 -- [100] 
      
TbFe2 710 1.4 3λ111/2 = 6.6 20.2 [111] 
DyFe2 635 1.6 3λ111/2 = 6.4* -- [100] 
*Extrapolated from measurements at higher temperatures 
 
 
 
Table 10-2. Magnetostriction and Curie Temperatures of Ni, Fe, Co, and some Rare Earth-
Iron Compounds.* 
 

Material (3/2)λs x 106 TC (oC) 
Ni -50 360 
Fe -14 770 
Co -93 1130 

SmFe2 -2340 415 
TbFe2 2360 431 
DyFe2 650 362 
HoFe2 120 332 
ErFe2 -449 320 
TmFe2 -195 287 
SmFe3 -317 377 
TbFe3 1040 379 
DyFe3 528 333 
HoFe3 86 300 
ErFe3 -104 280 
TmFe3 -65 264 

*See A. E. Clark in Ferromagnetic Materials, Vol. I, chapter 7, and K H. J. Buschow, 
Ferromagnetic Materials, Vol. I, chapter 4, ed. E. P. Wohlfarth, North Holland Press, (1980).  
For the rare earth compounds (3/2)λs denotes λ|| - λ⊥ at 25 kOe. 
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Table 10-3. Polarity of the Magnetostriction Constants (λ), and the two Lowest Order Magnetic 
Anisotropy Constants (K1 and K2) of the Rare earth-Fe2 Compounds. 
 

 SmFe2 TbFe2 DyFe2 HoFe2 ErFe2 TmFe2 YbFe2 
λ - + + + - - - 
K1 - - + + - - + 
K2 0 + - + - + - 

 
 
 
10.1 Mechanical, Thermal, and Magnetic Properties of Terfenol-D. 
 

Table 10.1-1 is a listing of some common mechanical, thermal, and magnetic properties 
of Terfenol-D at room temperature. 
 
Table 10.1-1.  Typical Room Temperature Terfenol-D Mechanical, Thermal, and Magnetic 
Properties. 

 
Property mks units Ref. 

Density 9250 kg/m3 1 
Bulk Modulus 370 GPa 1 
Young's Modulus, (1 33/ sH ) 25 – 35 GPa 3 
"             "            , (1 33/ sB ) 50 – 70 GPa 3 
Sound Speed, vH ~1700 m/s 3 
"          "        , vB ~2500 m/s 3 
Tensile Strength ~28 MPa 3 
Compressive Strength ~880 MPa 4 
4-Point Bending Strength ~40 MPa 4 
   
Thermal Expansion 12 x 10-6/oC 2 
Heat Capacity 320 – 370 J/kgoC 2 
Thermal Conductivity 10.5 – 10.8 W/moC 2 
   
Electrical Resistivity 60 x 10-8 ohm/m 1 
   
Curie Temperature 380oC 6 
Magnetization 1.0 T 6 
Permeability, relative 5 - 10 5 
   
Saturation magnetostriction 1.5 – 2.0 x 10-3 6 
Piezomagnetic constant, d33  1.0 – 1.5 x 10-8 m/A 5 
Coupling factor, k33  0.65 – 0.75 1,5 
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1. A. E. Clark, Ferromagnetic Materials, ed. E. P. Wohlfarth, Vol. I, Chapter 7, p. 531, North 
 Holland Publishing Co. 1980.  
2. Fact Sheet, ETREMA, Inc. Ames IA, 1996. 
3. J. L. Butler, Application Manual for the Design of ETREMA Terfenol-D Magnetostrictive 
 Materials, ETREMA, Inc., Ames IA, 1988. 
4. K. Kondo and K. Shinozaki, Proc. Int. Conf. on Giant Magnetostrictive Materials, Tokyo, 
 Japan, Nov. 5-6, 1992. 
5. M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Lindberg, J. P. Teter, and E. A. McLaughlin,  
 J. Acoust. Soc. Amer. 89, 1448 (1991). 
6. A. E. Clark and D. N. Crowder, IEEE Trans. on Magnetics, MAG-21, 1945, (1985). 
 
 
10.2 Temperature Dependence of the Magnetostriction of Terfenol-D 
 

The saturation magnetostriction of Terfenol-D decreases slightly with temperature above 
room temperature due to a decrease in the magnetization as the Curie temperature (380oC) is 
approached.  The magnetostriction also decreases as the temperature is reduced below room 
temperature due to a magnetic spin reorientation away from the highly magnetostrictive [111] 
axis.  The temperature of the peak magnetostriction can be adjusted by altering the value of x in 
Terfenol-D (Tb1-xDyxFe1-y).  The temperature dependence of Tb.3Dy.7Fe1.9 near room temperature 
is given in Fig.10.2-1 for various fields and two compressive stresses.  The high temperature 
dependencies of the magnetostrictions of TbFe2 and Tb.27Dy.73Fe1.95 are given in Fig. 10.2-2.* 
* Clark, A. E. and D. N. Crowder, IEEE Trans. on Magnetics, MAG-21, 1945, (1985). 
 
 
10.3 Magnetic Field and Compressive Stress Dependencies of the Magnetostriction 
of [112] Textured Tb.3Dy.7Fe2 at Room Temperature 
 
 Because of a large magnetostriction anisotropy in the cubic crystal of Terfenol-D (λ111 
>> λ100), the magnetostriction is strongly dependent upon the orientation of the crystallites in the 
sample.  The preferred crystalline growth direction in Terfenol-D is [112] which yields a 
saturation magnetostriction approximately 80% as high as high as the largest magnetostriction, 
λ111. Thus, because of the lower cost, samples are frequently prepared with the [112] texture.  
Moffet et al.* have documented many magnetostriction vs field and magnetostriction vs stress 
dependencies for large diameter (~1.5") Tb.3Dy.7Fe2 prepared with this [112] texture.  Fig. 10.3-1 
gives the hysteresis loops of the magnetostriction curves vs applied magnetic field for fixed 
compressive stresses up to 65 MPa.  See Table 10.3-1.  Some minor loops are also shown, biased 
around typical values of magnetic field.  Fig. 10.3-2 shows the stress dependence of the strain at 
fixed values of magnetic field for fields up to 2.2 kOe.  Figs. 10.3-1 and 10.3-2 are representative 
of the magnetostriction of large diameter (1.5") rods prepared using the Bridgman growth 
technique.  The magnetization, magnetostriction, and elastic modulus of even larger (2.5") rods 
have also been measured.**  
* Moffet, M. B., A. E. Clark, M. Wun-Fogle, J. Lindberg, J. P. Teter, and E. A. McLaughlin, J. 
Acoust. Soc. Am. 89, 1448 (1991). 
** Restorff, J. B., and M. Wun-Fogle, NSWCCD-TR-97/004. [Limited Distribution] 
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A crucibleless (free-standing zone) method of preparation yields somewhat larger values 

of saturation strain, but is generally limited to small diameter (0.4") samples.  The performance 
of these materials is strongly dependent upon sample preparation and is not reported here.* 
*  Savage, H. T., R. Abbundi, A. E. Clark, and O. D. McMasters, J. Mag. And Mag. Materials, 
15-18, 609 (1980).   
 
Table 10.3-1.  Compressive Prestress and Magnetic Bias Conditions for curves shown in Figs.  
10.3-1 and 10.3-2. 
 

Bias Condition Compressive Stress Magnetic Bias Field 
 (ksi)        (MPa) (kOe)         (kA/m) 
1 1.01           6.9 0.15           11.9 
2 2.22          15.3 0.4             31.8 
3 3.43           23.6 0.7             55.7 
4 4.64          32.0 1.0             79.6 
5 5.86          40.4 1.3            103.0 
6 7.07          48.7 1.6            127.0 
7 8.28          57.1 1.9            151.0 
8 9.49          65.4 2.2             175.0 

 
 
10.4 Magnetic Field Dependent Stress-Strain and Young’s Modulus Curves for 
Terfenol-D at Room Temperature. 
 
 Because of the large magnetostriction, the stress-strain relation of Terfenol-D is strongly 
magnetic field dependent. Fig. 10.4-1 shows how the strain depends upon stress for various 
magnetic fields up to 1500 Oe.  Fig. 10.4-2 shows the softening of the modulus due to the 
magnetostriction over the same field range.* 
* Savage, H. T., A. E. Clark, and D. Pearson, 4th Joint MMM-Intermag Conf, Vancouver, 
Canada, July 1988, unpublished. 
 
 
10.5 The Piezomagnetic Matrix and Low Magnetic Field Properties of Terfenol-D 
 
 The piezomagnetic matrix equation relating the Cartesian strain (Si ) and magnetic 
induction (Bi ) components to stress (Ti) and magnetic field (Hi ) components for a planar 
isotropic [112] textured Terfenol-D sample which is polarized and stressed along the 3 axis (i.e. 
T T T T T H1 2 4 5 6 1, , , , , , and H2 are small) can be written:* 
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Here Si 's are the conventional Voigt elastic strain components and Ti 's are the conventional stress 
components under the condition of total zero torque.   
*Du Tremolet de Lacheisserie, E., Magnetostriction, CRC Press, Boca Raton, FL (1993); 
Claeyssen, F., Design and Construction of Low-frequency Sonar Transducers Based on Rare 
earth-iron Alloys, Ph.D. Thesis, Insititut National des Sciences appliquees de Lyon, Lyon France 
(1989). 
 

This matrix is often written in the following way with repeated indices (α, β, m, n): 
 

S s T d H

B d T H

H
n n

m m mn
T

n

a ab b a

b b m

= +

= +
 

  
F. Claeyssen has reported all the coefficients of this matrix for H = 60 kA/m and T = 20 MPa:* 
 
sH

11
112 7 10= ¥ -.  Pa-1    d31

80 52 10= - ¥ -.  m/A 
sH

12
110 10= - ¥ -.43  Pa-1   d33

81 04 10= ¥ -.  m/A 
sH

13
111 9 10= - ¥ -.  Pa-1    d15

82 8 10= ¥ -.  m/A 
sH

33
114 2 10= ¥ -.  Pa-1      

sH
44

1116 7 10= ¥ -.  Pa-1    m m11 06 9T = .   
sH

66
116 26 10= ¥ -.  Pa-1    m m33 04T = .4      

 
k33 0 69= .  
k31 0= .43 
k15 0 74= .  
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Note when the magnetic field is applied parallel to the stress axis (i.e. retaining only T3 and H3): 
 
S s T d HH

1 13 3 13 3= +    B1 0=  
S s T d HH

2 13 3 13 3= +    B2 0=  
S s T d HH

3 33 3 33 3= +    B d T HT
3 33 3 33 3= + m  

S4 0=  
S5 0=  
S6 0=  
 
For this case the important coefficients reduce to only five (Poisson's ratio ≡ n ): 
 
s E33 1= /     d33     m33  
s E13 = -n /     d31 
 

For the matrix defined by the alternative relationships: 
 

T c S e H

B e S H

H
n n

m m mn
S

n

a ab b a

b b m

= -

= +
 

 
the coefficients become:* 
 
cH

11
1010 7 10= ¥.  Pa     e31

20 90 10= - ¥.  T               
cH

12
107 10= ¥.48  Pa     e33

21 66 10= ¥.  T 
cH

13
108 21 10= ¥.  Pa     e15

21 68 10= ¥.  T 
cH

33
109 81 10= ¥.  Pa 

cH
44

100 60 10= ¥.  Pa     m m11 0316S = .  
cH

66
101 61 10= ¥.  Pa     m m33 02 28S = .  

 
*Claeyssen, F., Design and Construction of Low-frequency Sonar Transducers Based on Rare 
earth-iron Alloys, Ph.D. Thesis, Insititut National des Sciences Appliquees de Lyon, Lyon 
France (1989). 
 
 
10.6 Magnetic Field and Compressive Stress Dependence of the Piezomagnetic 
Properties of Terfenol-D at Room Temperature 
 

Table 10.6-1 lists some of the piezomagnetic coefficients of Terfenol-D at a fixed bias 
field of 90 kA/m for compressive stresses from 30 MPa to 50 MPa. 
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Table 10.6-1 Longitudinal Magnetomechanical Coefficients of Terfenol-D at 90 kA/m.* 
 

T(MPa) 30 35 40 50 
Y H  (GPa) 29 21 23 40 
sH

33 (GPa-1) 0.034 0.048 0.043 0.025 
QH  4.6 3.5 4.3 8.3 

m m33 0
T /  3.7 4.2 3.8 3.0 
QT  2.0 1.9 2.2 2.8 

d33  (nm/A) 8.0 11.0 9.7 5.0 
k33  .63 .69 .67 .52 

* Claeyssen, F., J. Alloys and Compounds, 258, 61 (1997). 
 

Table 10.6-2 lists some piezomagnetic properties of Terfenol-D when the magnetic bias 
is optimized to a given compressive prestress.  Note values of compliance and coupling factor 
are almost stress independent under this condition.* 
 
Table 10.6-2. Piezomagnetic Properties of Terfenol-D under Certain Compressive Stress and 
Magnetic Bias Conditions. 
 

T (MPa) 7 10 14 21 
Hbias (kA/m) 12 18 30 48 
sH

33 (GPa-1) 0.050 0.053 0.053 0.055 
d33  (nm/A) 22.6 19.8 17.4 9.62 
m m33 0

T /  14.6 12.9 10.0 9.6 
k33  .75 .68 .67 .69 

* Wakiwaka, H. et al., J. Alloys and Compounds 258, 87 (1997) 
 
 

In section 10.3 are reported minor loops of strain vs magnetic field for stresses up to 65 
MPa and strain vs stress curves for magnetic fields up to 5 kOe.  Each of the minor loops of Fig. 
1.3-1 of that section represents a possible ac drive condition.  The slope of a line drawn through 
the end-points of each minor loop can be taken as the d33  coefficient corresponding to that drive 
condition.  In Fig. 10.6-1 are plotted the values of d33 as a function of magnetic drive amplitude 
for each of the prestresses and magnetic bias conditions of Table 10.3-1.  Except for very low 
drive levels (<400 Oe), d33  decreases with drive amplitude and with prestress.  At high drive 
levels (> 2 kOe) saturation occurs and d33  becomes independent of the bias condition. 

 
 The relative permeabilities m m33 0

T /  (m0 = permeability of free space) of Terfenol-D are 
plotted in Fig.10.6-2.  These data are taken from magnetic induction (B) vs magnetic field (H) 
minor loops obtained in a similar fashion to those of Fig. 10.3-1.  The permeability decreases 
with increasing prestress but becomes nearly amplitude independent for prestresses greater than 
~15 MPa. 
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 From the stress-strain hysteresis loops of Fig. 10.3-2, the open-circuit compliance 
coefficients, sH

33, were obtained and plotted in Fig.10.6-3 as a function of the stress amplitude.  
For most of the bias conditions, there exists a maximum compliance, and at large stress 
amplitudes, the compliance becomes nearly independent of the bias level. 
 
 The piezomagnetic properties of Terfenol-D become non-linear under high drive 
conditions.  There is an amplitude dependence of s dH T

33 33 33,   and m .  However, a very useful first 
approximation to the behavior of Terfenol-D in a transducer is still the linear model.  In Figs. 
10.6-4 – 10.6-6, the bias conditions of Table 10.3-1 are used to yield two values of each of the 
constants.  One choice, represented by the square symbols of s dH T

33 33 33,   and m  in Figs. 10.6-4 –
10.6-6 involve the maximum values from Figs. 10.6-1 to 10.6-3.  This choice, appropriate for 
medium signal levels, represents an approximation to maximum coupling.  The second choice, 
represented by the circle symbols in Figs. 10.6-4 - 10.6-6, is the high-signal case.  In this case, 
the zero-to-peak amplitudes are taken to be the magnetic fields listed in Table 10.6-3.  The 
values of s dH T

33 33 33,   and m  were obtained from the hysteresis loops of Figs. 10.3-1 and 10.3-2 such 
that the distortion in the strains is 15% to 20%. 
 
Table 10.6-3.  Maximum allowed zero-to-peak magnetic field and stress amplitudes 
corresponding to one hysteresis-loop-width deviation from linearity. 
 

Bias Condition Compressive Stress Magnetic Bias Field 
 (ksi)        (MPa) (kOe)         (kA/m) 
1 1.0           6.9 0.15              12 
2 1.7            12 0.4                32 
3 2.6            18 0.5                40 
4 2.9            20 0.7                56 
5 2.9            20 0.8                64 
6 2.9            20 0.8                64 
7 2.9            20 0.8                64 
8 2.9            20 0.8                64 

 
 Coupling factors, k33 , calculated from Figs. 10.6-4 - 10.6-6 are plotted in Fig. 10.6-7.  
Note the almost independent stress dependence of the coupling factor.  The difference between 
the medium level and high level values of k33 is also not large, i.e. the coupling factor is nearly 
constant, independent of drive amplitude and stress.    The coupling factor ranges from .65 to .8, 
over the 7 to 65 MPa range.  These values are a factor of 2 greater than those of older 
magnetostrictive materials, such as nickel. 
 

Kendall, D. and A. R., Piercy* calculated dynamic values of d33  and k33  for temperatures 
between – 21oC to 70oC using a rms drive field of 450 A/m.  
* Kendall, D. and A. R., Piercy, IEEE Trans. on Magnetics, 26 1837 (1990) 
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10.7 TbuDyvHowFe2 (u+v+w=1) alloys 
 
 As indicated in Table 10-3, alloys containing Tb, Dy and Ho are suitable rare earth 
transducer materials.  In Figs. 10.7-1,-2,-3 are compared the field dependencies of the 
magnetostriction, the piezomagnetic d33  constant, and the coupling factor, respectively, of the 
ternary Tb1-xDyxFe2 and  
Tb1-yHoyFe2 compounds optimized for transduction at room temperature (x = 0.7, y ≅ 0.75).  
 
 In the quaternary TbxDyyHozFe2 (x+y+z=0) alloys, the two lowest anisotropy constants 
can be minimized and the optimum magnetostriction/anisotropy (λ/K) ratio can be obtained.  
This room temperature optimized alloy is Tb0.2Dy0.22Ho0.58Fe2.* For this alloy, the 
magnetostriction λ111 =  820 ppm, which is close to that of the ternary Tb0.23Ho0.77Fe2 where  
λ111 = 710 ppm.  In order to attain a low anisotropy and hysteresis, while at the same time 
reducing the magnetostriction only slightly from that of Terfenol-D (λ111  = 1620 ppm), 
dysprosium rich quaternary alloys with compositions close to Terfenol-D have been 
synthesized.**  Fig. 10.7-4 is a plot of the magnetostriction vs magnetic field for 
Tb0.28Dy0.57Ho0.15Fe2 at compressive stresses up to 70 MPa.  Fig. 10.7-5 is a plot of the reduction 
in hysteresis with various concentrations of Ho for an applied peak-to-peak magnetic field of 900 
Oe centered about a bias magnetic field situated at the largest d33 value.  Fig. 10.7-6 depicts the 
accompanying reduction in magnetostriction with the addition of similar concentrations of Ho.  
The decrease in hysteresis is significant whereas the accompanying decrease in magnetostriction 
is small. At very high stresses, where the magnetostriction is reduced because of the stress, there 
is no appreciable further reduction in magnetostriction with Ho addition. 
*Williams, C. M., and N. C. Koon, Physica, 86-88B,147 (1977); Koon, N. C., C. M. Williams, 
and B. N. Das, J. Magn. and Magn. Materials, 100, 173 (1991). 
**Wun-Fogle, M., J. B. Restorff, A. E. Clark, and J. F. Lindberg, Proc. Conf. on Magn. and 
Magn. Mat's, San Francisco, CA, Jan. 6-8, 1998.   
 
 Table 10.7-1 is a summary of the magnetomechanical coupling factor (k33) and saturation 
magnetostriction (λ111) for various rare earth-Fe2 materials at room temperature. 
 



10-11 

Table 10.7-1.Maximum Magnetomechanical Coupling and Magnetostriction of Various Rare 
Earth-Fe Compounds. 
 

Material k33 λ111 x 106 
TbFe2 0.35 2450 

Tb0.5Dy0.5Fe2 0.51 1840 
Tb0.27Dy0.73Fe2 0.53-0.70 1620 

Tb0.23Dy0.35Ho0.42Fe2 0.62 1130 
Tb0.20Dy0.22Ho0.58Fe2 0.60-0.66 820 
Tb0.19Dy0.18Ho0.63Fe2 0.59 810 

SmFe2 0.35 -2100 
Sm0.88Dy0.12Fe2 0.55 -1620 
Sm0.7Ho0.3Fe2 0.35 -1370 

Tb0.23Ho0.77Fe2(oriented) 0.76 710 
Tb0.27Dy0.73Fe2(oriented) 0.74 1620 
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Figure 10.2-1 Temperature dependence of the magnetostriction of Terfenol-D at 7.6 MPa and 
18.9 MPa. 

 



10-13 

 

 
 
 

Figure 10.2-2 Temperature dependence of the magnetostriction of TbFe2 and Tb0.27Dy0.73Fe2 from 20oC to 375oC. 
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Figure 10.3-1 Hysteresis loops of extensional strain vs applied magnetic field for constant stress 
values of Table 10.3-1. 
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Figure 10.3-2 Hysteresis loops of extensional strain vs stress for the constant magnetic fields of 
Table 10.3-1. 
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Figure 10.4-1 Stress-strain curves at various bias magnetic fields for Terfenol-D. 
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Figure 10.4-2 Young's modulus vs strain at bias fields from 0 to 1500 Oe for Terfenol-D. 
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Figure 10.6-1 Dependencies of d33 on magnetic drive amplitudes for the prestress and magnetic bias combinations of Table 10.3-1. 



10-19

 

 
 
 

Figure 1.6-2 Dependencies of the relative permeability on magnetic drive amplitudes for the prestress and magnetic bias 
combinations of Table 10.3-1. 
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Figure 1.6-3 Dependence of the open-circuit compliance coefficient on stress amplitude for the prestress and magnetic bias 
combinations of Table 10.3-1. 
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Figure 10.6-4 Piezomagnetic d33 constant for medium-level (squares) and high-level (circles) drive amplitudes as a function of 
prestress. 
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Figure 10.6-5 Relative permeability for medium-level (squares) and high-level (circles) drive amplitudes as a function of prestress. 
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Figure 10.6-6 Open-circuit compliance for medium-level (squares) and high-level (circles) drive amplitudes as a function of prestress. 
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Figure 10.6-7 Magnetomechanical coupling factor for medium-level (squares) and high-level (circles) drive amplitudes as a function of 
prestress. 
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Figure 10.7-1 Magnetostriction of Tb0.3Dy0.7Fe2, Tb0.3Ho0.7Fe2, and oxide annealed nickel as a 
function of magnetic field. 
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Figure 10.7-2 Piezomagnetic d33 constant of Tb0.3Dy0.7Fe2, Tb0.2Ho0.8Fe2, and oxide annealed 
nickel as a function of magnetic field. 
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Figure 10.7-3 Magnetomechanical coupling factor of Tb0.3Dy0.7Fe2 , Tb0.25Ho0.75Fe2, and oxide 
annealed nickel as a function of magnetic field. 
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Figure 10.7-4 Magnetostriction vs applied magnetic field for Tb0.28Dy0.57Ho0.15Fe2 under 
compressive stresses of 9.8, 21.9, 33.9, 46.0, 58.1 and 70.1 MPa. 
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Figure 10.7-5 Hysteresis width Wh vs Ho concentration for Tb0.3Dy0.7Fe1.95, 
Tb0.28Dy0.57Ho0.15Fe1.95, Tb0.26Dy0.54Ho0.2Fe1.95, and Tb0.2Dy0.22Ho0.58Fe1.95 for compressive 
stresses of 9.8 MPa (filled squares), 21.9 MPa (filled triangles), 33.9 MPa (filled diamonds), 46 
MPa (filled circles), 58.1 MPa (open squares), and 70.1 MPa (open circles).  The hysteresis 
width Wh is defined as the average width of the magnetic field-strain curve at the field where d33 
is maximum. 
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Figure 10.7-6 Peak-to-peak magnetostriction Spp vs Ho concentration as a function of 
compressive stresses for Tb0.3Dy0.7Fe1.95, Tb0.28Dy0.57Ho0.15Fe1.95, Tb0.26Dy0.54Ho0.2Fe1.95, and 
Tb0.2Dy0.22Ho0.58Fe1.95.  The peak-to-peak magnetostriction Spp is defined as the change in strain 
over a range of 71.6 kA/m (~900 Oe) centered around the field at which the piezomagnetic 
constant d33 is maximum, subject to the restriction that the field is always positive.  
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