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In this paper I describe a technique for calculating the far-field pressure due
to a vibrating piston of arbitrary shape located on an infinite rigid planar
baffle. The technique is based on a two-dimensional version of Green’s the-
orem. Integral expressions over the area of the piston are converted to line
integrals around the perimeter of the piston. Explicit relations are derived
for polygonal pistons with any number of sides.

Let P be denote a region in a plane infinite rigid baffle that is udergoing
piston-like vibration with normal displacement u and let o be an origin lo-
cated on P . Using the far-field representation of the infinite plane Green’s
function, the pressure at a far-field point x due to this piston is given by

p(x) = −ω2ρu

2π
e−ik|x−o|

|x − o|
∫

P

eik(x−o)·(y−o)/|x−o| dS(y) (1)

where ω is the angular frequency, ρ is the fluid density, k is the acoustic wave
number (k = ω/c), and c is the fluid sound speed. Define

I(x) =
∫

P

eik(x−o)·(y−o)/|x−o| dS(y). (2)

Then, it follows from equation (1) that

p(x) = −ω2ρu

2π
e−ik|x−o|

|x − o| I(x). (3)

If x0 − o is the projection of (x − o)/|x − o| onto the plane of P , then

I(x) =
∫

P

eik(x0−o)·(y−o) dS(y). (4)

Green’s theorem in two dimensions can be written∫
P

∇φ =
∮

∂P

φ�n (5)

where ∇ is the two-dimensional gradient in the plane of P , ∂P is the bound-
ary of P , and �n is the outward unit normal to ∂P . If we choose φ to be the
function

φ(y) = eik(x0−o)·(y−o), (6)
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then
∇φ(y) = ik(x0 − o)eik(x0−o)·(y−o) (7)

and hence ∫
P

∇φ = ik(x0 − o)
∫

P

eik(x0−o)·(y−o) dS(y)

= ik(x0 − o)I

=
∮

∂P

φ�n

=
∮

∂P

eik(x0−o)·(y−o) �n ds(y). (8)

If x0 = o, then it follows from equation (4) that I(x) = Area(P ). Assume
that x0 �= o. Taking the dot product of equation (8) with x0 − o, we get

I(x) =
1

ik(x0 − o) · (x0 − o)

∮
∂P

(
(x0 − o) · �n)

eik(x0−o)·(y−o) ds(y). (9)

This equation together with equation (3) provides a general expression for
the far-field pressure in terms of a line integral around the perimeter. If x−o
is written in terms of a spherical coordinate system with origen at o and
z-axis perpendicular to the plane of the piston, x0 − o depends only on the
angular coordinates θ and φ.

Suppose now that P is a polygonal region. Let Em denote the m-th edge
of the polygon P and let �nm denote the outward unit normal to Em in the
plane. Then it follows from equation (9) that

I(x) =
1

ik(x0 − o) · (x0 − o)

M∑
m=1

(
(x0 − o) · �nm

) ∮
Em

eik(x0−o)·(y−o) ds(y) (10)

where M is the number of edges of P . The edge Em can be described by the
parametric equation

y(τ) = x̄m + τ�tm − sm/2 ≤ τ ≤ sm/2 (11)

where x̄m is the mid-point of the m-th edge, �tm is a unit tangent vector
along the m-th edge, and sm is the length of the m-th edge. The integral in

2



equation (10) can now be written

∮
Em

eik(x0−o)·(y−o) ds(y) =
∫ sm/2

−sm/2
eik(x0−o)·(x̄m−o+τ�tm) dτ

=
2eik(x0−o)·(x̄m−o)

k(x0 − o) · �tm
sin

(
k
sm

2
(x0 − o) · �tm

)
. (12)

Combining equations (10) and (12), we get

I(x) =
2

ik2(x0 − o) · (x0 − o)

M∑
m=1

(
(x0 − o) · �nm

(x0 − o) · �tm

)
eik(x0−o)·(x̄m−o)

· sin
(
k
sm

2
(x0 − o) · �tm

)
.

(13)

It folows from equation (3) and equation (13) that

p(x) =
−ρc2u

iπ(x0 − o) · (x0 − o)
e−ik|x−o|

|x − o|
M∑

m=1

(
(x0 − o) · �nm

(x0 − o) · �tm

)
eik(x0−o)·(x̄m−o)

· sin
(
k
sm

2
(x0 − o) · �tm

)
.

(14)
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