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1 Introduction

The numerical approximation of many physical problems leads to the solution of a system
of linear algebraic equations of the form

Ax = b (1)

where A is an N×N matrix representing some linear operator, b is an N -vector representing a
forcing function, and x is an N -vector of unknowns corresponding to the values of some scalar
physical quantity at N locations in a spatial region of interest. For example, the components
of x might correspond to the values of pressure or electric potential at a discrete set of points.
In this paper we have restricted our attention primarily to problems involving scalar physical
variables, but the general techniques developed can be extended to problems involving vector
variables by appropriately extending the definition of the symmetry operators. Symmetry
in the physical problem manifests itself in the structure of the matrix A. For example, with
proper numbering of the evaluation points, one plane of symmetry leads to the following
structure of A

A =
(

A1 A2

A2 A1

)
. (2)

Here A1 and A2 are submatrices of A that are one-half the size of A. The special forms
resulting from various types of symmetry can be utilized to significantly reduce the solution
time of equation (1). In this paper we will consider the following types of symmetry

1. one, two, or three planes of symmetry

2. any finite order of rotational symmetry

3. any finite order of rotational symmetry plus one additional plane of symmetry.

It is not necessary for the forcing vector b to have the same symmetry as the rest of the
problem in order to achieve reductions in solution times, but additional reductions can be
achieved if the forcing vector has the same symmetry. Table 1 shows the reductions in
computational times that can be obtained by taking advantage of these symmetries.

2 Basic Theory

In this section we will discuss the basic theory behind the symmetry reduction schemes that
are the subject of this paper. All of the symmetry reductions we will consider are based
on two simple concepts. The first is that the symmetry in the physical problem manifests
itself in the commutation of the operator A in equation (3) with certain symmetry operators
(reflections and/or rotations). The second is a result from linear algebra stating that the
eigenspaces of an operator are invariant under any operator that commutes with it. In the
remainder of this section we will apply these concepts to the various types of symmetry
under consideration.
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Table 1: Time reduction factors for various types of symmetry

Symmetry Type Solution Solution with
right-hand-side

symmetry

Matrix
generation

1 plane of symmetry 4 8 2

2 planes of symmetry 16 64 4

3 planes of symmetry 64 512 8

N -fold rotational symmetry N2 N3 N

N -fold rotational symmetry
plus 1 plane of symmetry

4N2 8N3 2N

2.1 One plane of symmetry

Consider a planar region as shown in figure 1 that has one plane of symmetry. The evaluation
points are numbered from 1 to 16.
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Figure 1: Subdivided region with one plane of symmetry

Notice that the evaluation points are symmetrically located relative to the symmetry plane
and that the numbering of points in symmetric portions of the region is in the same order.
This symmetric numbering greatly simplifies the resulting matrix structure. Suppose that
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the physics of the problem leads to a system of linear equations

Ax = b (3)

for the unknown vector x, where the components of x correspond to the values of some
scalar physical variable at the evaluation points shown. Let x be partitioned into two parts
corresponding to the two sides of the symmetry plane as follows

x =
(

x1

x2

)
. (4)

The operator Σ corresponding to reflection across the symmetry plane is defined by

Σx = Σ
(

x1

x2

)
=
(

x2

x1

)
for all x. (5)

It is easily verified that Σ must have the block form

Σ =
(

0 I
I 0

)
(6)

where I is an identity matrix. Suppose that the forcing vector b is reflected across the
symmetry plane, i.e., b is replaced by Σb. The symmetry of the problem implies that the
resulting solution x would also be reflected across the symmetry plane, i.e., x becomes Σx.
For example, the response at location 11 due to a unit forcing function at location 4 is the
same as the response at location 3 due to a unit forcing function at location 12. Thus, in
general

AΣx = Σb = ΣAx. (7)

Since equation (7) must hold for any choice of b (and hence x), it follows that

AΣ = ΣA, (8)

i.e., the operators Σ and A commute. Substituting the partitioned forms of A and Σ into
equation (8) and carrying out the block multiplications shows that A has the block form

A =
(

A1 A2

A2 A1

)
. (9)

Commuting operators have the property that the eigenspaces of one of the operators are
invariant under the other operator. For example, if e is an eigenvector of Σ corresponding
to the eigenvalue λ, then

Σ(Ae) = A(Σe) = λ(Ae), (10)

i.e., Ae is also an eigenvector of Σ corresponding to the eigenvalue λ. Since symmetry
operators like Σ have relatively simple eigenstructures that can be determined by inspection
or simple analysis, we will use the fact that these eigenspaces are invariant under A. The
eigenvalues of Σ are ±1. A basis of eigenvectors corresponding to the eigenvalue +1 is given

3



by the columns of the matrix
(

I
I

)
where I is the identity matrix. Similarly, a basis of

eigenvectors corresponding to -1 is given by
(

I
−I

)
. If we change to the basis given by the

columns of

S =
(

I I
I −I

)
(11)

then the invariance of the eigenspaces of Σ under A implies that the matrix will become
block diagonal relative to this basis. Under this change of basis A becomes S−1AS. The
matrix S has the property

S−1 = 1
2S. (12)

Thus,

S−1AS = 1
2SAS =

(
A1 + A2 0

0 A1 − A2

)
(13)

and the system of equations (3) becomes

(S−1AS)(S−1x) =
(

A1 + A2 0
0 A1 − A2

)(
x̂1

x̂2

)
= S−1b =

(
b̂1

b̂2

)
(14)

where

x̂ =
(

x̂1

x̂2

)
= S−1x. (15)

Equations (14)–(15) imply that the original system of equations (3) can be replaced by two
systems of half the size, i.e.,

(A1 + A2) x̂1 = b̂1

(A1 − A2) x̂2 = b̂2

(16a)

where

b̂1 = 1
2(b1 + b2)

b̂2 = 1
2(b1 − b2)

(16b)

and

x1 = x̂1 + x̂2

x2 = x̂1 − x̂2.
(16c)

Since solution time is proportional to the cube of the number of equations, it is four times
faster to solve the two smaller systems than the original larger system. If the right-hand-side
b is symmetric across the symmetry plane, then it follows that b1 = b2, b̂1 = b1, b̂2 = 0,
x̂2 = 0, and x1 = x2 = x̂1. In this case it is only necessary to solve the single system of
equations

(A1 + A2) x1 = b1 (17)

and set x2 = x1.
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2.2 Some Extensions of the theory

We have made some simplifying assumptions in order to make the explanations easier. For
example, we have assumed that the underlying physical variable is scalar and that none
of the points of evaluation lie on a symmetry plane. To extend the procedure to vector
problems, the components of x and b are replaced by 3-vectors. The symmetry operator Σ
has the same form as in the scalar case with the ones in the identity matrices replaced by
the 3-vector reflection operator σ. With these changes the basic procedure can be applied
as before.

Points lying on the symmetry plane can be handled in at least two ways. In the first way the
vectors x and b are further partitioned so that the points lying on the symmetry plane are
grouped together. For example, with one symmetry plane the vector x can be partitioned
as follows

x =

⎛
⎝x+

x0

x−

⎞
⎠ (18)

where x0 corresponds to points on the symmetry plane. The symmetry operator Σ now
becomes

Σ =

⎛
⎝0 0 I

0 I 0
I 0 0

⎞
⎠ . (19)

The commutation of A with Σ implies that A must have the form

A =

⎛
⎝A1 A2 A3

A4 A5 A4

A3 A2 A1

⎞
⎠ . (20)

As before, the eigenvalues are ±1 , but now the eigenspace corresponding to +1 is of higher
dimension than the eigenspace corresponding to -1. The eigenmatrix S for this case is given
by

S =

⎛
⎝ I 0 I

0 I 0
I 0 −I

⎞
⎠ . (21)

Applying the change of basis corresponding to S gives

S−1AS =

⎛
⎝A1 + A3 A2 0

2A4 A5 0
0 0 A1 − A3

⎞
⎠ . (22)

The case with points on the symmetry plane can also be handled by double numbering the
points on the symmetry plane.
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2.3 Two planes of symmetry

Consider next a problem having two planes of symmetry. The four symmetry quadrants will
be numbered as shown in table 2. Two planes of symmetry can be handled by applying

Table 2: Numbering of quadrants for two planes of symmetry

Quadrant x1 x2

1 + +
2 + -
3 - +
4 - -

the results for one plane of symmetry successively to the two reflection operators. If the
evaluation points are numbered symmetrically in the four symmetry quadrants, then the
two reflection operators Σ1 and Σ2 can be written

Σ1 =

⎛
⎜⎜⎝

0 0 I 0
0 0 0 I
I 0 0 0
0 I 0 0

⎞
⎟⎟⎠ Σ2 =

⎛
⎜⎜⎝

0 I 0 0
I 0 0 0
0 0 0 I
0 0 I 0

⎞
⎟⎟⎠ . (23)

Notice that

Σ1

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x3

x4

x1

x2

⎞
⎟⎟⎠ and Σ2

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x2

x1

x4

x3

⎞
⎟⎟⎠ . (24)

The fact that A commutes with both Σ1 and Σ2 implies that A must have the block structure

A =

⎛
⎜⎜⎝

A1 A2 A3 A4

A2 A1 A4 A3

A3 A4 A1 A2

A4 A3 A2 A1

⎞
⎟⎟⎠ . (25)

The symmetry operators Σ1 and Σ2 also commute with each other. Thus, each eigenspace of
Σ1 can be further subdivided into eigenspaces of the operator Σ2 restricted to this eigenspace.

The eigenvector matrices S1 and S2 corresponding to Σ1 and Σ2 are

S1 =

⎛
⎜⎜⎝

I 0 I 0
0 I 0 I
I 0 −I 0
0 I 0 −I

⎞
⎟⎟⎠ S2 =

⎛
⎜⎜⎝

I I 0 0
I −I 0 0
0 0 I I
0 0 I −I

⎞
⎟⎟⎠ . (26)
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If we apply the change of basis corresponding to S1 followed by the change of basis corre-
sponding to S2, then A becomes S−1

2 S−1
1 AS1S2 or (S1S2)−1A(S1S2). Thus, the matrix S1S2

plays the same role for two planes of symmetry as S did for one plane of symmetry. As
before, this change of basis makes A block diagonal. It is easily verified that

S1S2 =

⎛
⎜⎜⎝

I I I I
I −I I −I
I I −I −I
I −I −I I

⎞
⎟⎟⎠ (27)

and that the diagonal submatrices of (S1S2)−1A(S1S2) are A1+A2+A3+A4, A1−A2+A3−A4,
A1 +A2 −A3 −A4, and A1 −A2 −A3 +A4. Thus, two planes of symmetry allow the original
system of equations to be replaced by four smaller systems of one-quarter the size, i.e.,

(A1 + A2 + A3 + A4) x̂1 = b̂1

(A1 − A2 + A3 − A4) x̂2 = b̂2

(A1 + A2 − A3 − A4) x̂3 = b̂3

(A1 − A2 − A3 + A4) x̂4 = b̂4

(28a)

where

b̂1 = 1
4(b1 + b2 + b3 + b4)

b̂2 = 1
4(b1 − b2 + b3 − b4)

b̂3 = 1
4(b1 + b2 − b3 − b4)

b̂4 = 1
4(b1 − b2 − b3 + b4)

(28b)

and

x1 = x̂1 + x̂2 + x̂3 + x̂4

x2 = x̂1 − x̂2 + x̂3 − x̂4

x3 = x̂1 + x̂2 − x̂3 − x̂4

x4 = x̂1 − x̂2 − x̂3 + x̂4.

(28c)

If the right-hand-side also has two planes of symmetry, then it is only necessary to solve the
single system

(A1 + A2 + A3 + A4) x1 = b1 (29)

and set x2 = x3 = x4 = x1.

2.4 Three planes of symmetry

Consider next a problem having three planes of symmetry. We will number the symmetry
octants as shown in table 3.
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Table 3: Numbering of octants for three planes of symmetry

Octant x1 x2 x3

1 + + +
2 + + -
3 + - +
4 + - -
5 - + +
6 - + -
7 - - +
8 - - -

In this case we have three reflection operators

Σ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I
I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30a)

Σ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30b)

Σ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 0 0 0 0 0
I 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 I
0 0 0 0 0 0 I 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30c)
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The three eigenvector matrices are

S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 I 0 0 0
0 I 0 0 0 I 0 0
0 0 I 0 0 0 I 0
0 0 0 I 0 0 0 I
I 0 0 0 −I 0 0 0
0 I 0 0 0 −I 0 0
0 0 I 0 0 0 −I 0
0 0 0 I 0 0 0 −I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(31)

S2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 I 0 0 0 0 0
0 I 0 I 0 0 0 0
I 0 −I 0 0 0 0 0
0 I 0 −I 0 0 0 0
0 0 0 0 I 0 I 0
0 0 0 0 0 I 0 I
0 0 0 0 I 0 −I 0
0 0 0 0 0 I 0 −I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(32)

S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I I 0 0 0 0 0 0
I −I 0 0 0 0 0 0
0 0 I I 0 0 0 0
0 0 I −I 0 0 0 0
0 0 0 0 I I 0 0
0 0 0 0 I −I 0 0
0 0 0 0 0 0 I I
0 0 0 0 0 0 I −I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (33)

The product S1S2S3 is the matrix of basis vectors that block diagonalizes A. It is given by

S1S2S3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I I I I I I I I
I −I I −I I −I I −I
I I −I −I I I −I −I
I −I −I I I −I −I I
I I I I −I −I −I −I
I −I I −I −I I −I I
I I −I −I −I −I I I
I −I −I I −I I I −I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

In this case we can reduce the original system of equations to eight systems of one-eighth
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the size, i.e.,

(A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8) x̂1 = b̂1

(A1 − A2 + A3 − A4 + A5 − A6 + A7 − A8) x̂2 = b̂2

(A1 + A2 − A3 − A4 + A5 + A6 − A7 − A8) x̂3 = b̂3

(A1 − A2 − A3 + A4 + A5 − A6 − A7 + A8) x̂4 = b̂4

(A1 + A2 + A3 + A4 − A5 − A6 − A7 − A8) x̂5 = b̂5

(A1 − A2 + A3 − A4 − A5 + A6 + A7 − A8) x̂6 = b̂6

(A1 + A2 − A3 − A4 − A5 − A6 + A7 + A8) x̂7 = b̂7

(A1 − A2 − A3 + A4 − A5 + A6 + A7 − A8) x̂8 = b̂8

(35a)

where

b̂1 = 1
8(b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8)

b̂2 = 1
8(b1 − b2 + b3 − b4 + b5 − b6 + b7 − b8)

b̂3 = 1
8(b1 + b2 − b3 − b4 + b5 + b6 − b7 − b8)

b̂4 = 1
8(b1 − b2 − b3 + b4 + b5 − b6 − b7 + b8)

b̂5 = 1
8(b1 + b2 + b3 + b4 − b5 − b6 − b7 − b8)

b̂6 = 1
8(b1 − b2 + b3 − b4 − b5 + b6 − b7 + b8)

b̂7 = 1
8(b1 + b2 − b3 − b4 − b5 − b6 + b7 + b8)

b̂8 = 1
8(b1 − b2 − b3 + b4 − b5 + b6 + b7 − b8)

(35b)

and

x1 = x̂1 + x̂2 + x̂3 + x̂4 + x̂5 + x̂6 + x̂7 + x̂8

x2 = x̂1 − x̂2 + x̂3 − x̂4 + x̂5 − x̂6 + x̂7 − x̂8

x3 = x̂1 + x̂2 − x̂3 − x̂4 + x̂5 + x̂6 − x̂7 − x̂8

x4 = x̂1 − x̂2 − x̂3 + x̂4 + x̂5 − x̂6 − x̂7 + x̂8

x5 = x̂1 + x̂2 + x̂3 + x̂4 − x̂5 − x̂6 − x̂7 − x̂8

x6 = x̂1 − x̂2 + x̂3 − x̂4 − x̂5 + x̂6 − x̂7 + x̂8

x7 = x̂1 + x̂2 − x̂3 − x̂4 − x̂5 − x̂6 + x̂7 + x̂8

x8 = x̂1 − x̂2 − x̂3 + x̂4 − x̂5 + x̂6 + x̂7 − x̂8.

(35c)

If the right-hand-side also has three planes of symmetry, then it is only necessary to solve
the single system

(A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8) x1 = b1 (36)

and set x2 = x3 = x4 = x5 = x6 = x7 = x8 = x1.
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2.5 Finite order rotational symmetry

We will consider next finite order rotational symmetry. For example, a pentagon has rota-
tional symmetry of order five and an octagon has rotational symmetry of order eight. As
before we will assume that each symmetry block is numbered in the same order. The rotation
operator R has the property

Rx = R

⎛
⎜⎜⎜⎜⎜⎝

x1

x2
...

xN−1

xN

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

x2

x3
...

xN

x1

⎞
⎟⎟⎟⎟⎟⎠ for all x. (37)

Thus, R must have the block form

R =

⎛
⎜⎜⎜⎜⎜⎝

0 I 0 · · · 0
0 0 I · · · 0
... . . . ...
0 0 0 · · · I
I 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ . (38)

The eigenvalues of R are the N -th roots of unity. The eigenvector matrix S is given by

S =

⎛
⎜⎝

S11 · · · S1N
...

...
SN1 · · · SNN

⎞
⎟⎠ . (39)

where the block Smn is defined by

Smn = ei
2π(m−1)(n−1)

N I. (40)

The inverse of S is given by

S−1 =
1
N

⎛
⎜⎝

S∗
11 · · · S∗

1N
...

...
S∗

N1 · · · S∗
NN

⎞
⎟⎠ (41)

where ∗ denotes the complex conjugate.

The rotational symmetry implies that A commutes with R. This commutation relation
implies that A has the block circulant form

A =

⎛
⎜⎜⎜⎝

A1 A2 · · · AN

AN A1 · · · AN−1
...

...
A2 · · · AN A1

⎞
⎟⎟⎟⎠ . (42)
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To see this multiply out the blocks of RA and AR as before. The commutation of A with R
also implies that S−1AS is block diagonal. The diagonal blocks are given by

[S−1AS]mm =
N∑

n=1

ei
2π(m−1)(n−1)

N An m = 1, . . . , N. (43)

Thus, the original system of equations reduces to the N smaller systems of equations(
N∑

n=1

ei
2π(m−1)(n−1)

N An

)
x̂m = b̂m m = 1, . . . , N (44a)

where

b̂m =
1
N

N∑
n=1

e−i
2π(m−1)(n−1)

N bn (44b)

and

xm =
N∑

n=1

ei
2π(m−1)(n−1)

N x̂n m = 1, . . . , N. (44c)

If the right-hand-side vector b also has N -th order rotational symmetry, then it is only
necessary to solve the single system

(A1 + A2 + · · · + AN)x1 = b1 (44d)

and set x2 = x3 = · · · = xN = x1.

For those familiar with Fourier analysis it is easily seen that the symmetry reductions in this
section could also be obtained by using discrete Fourier transforms.

2.6 Finite order rotational symmetry with one additional plane of
symmetry

Often there is an additional plane of symmetry in problems having finite order rotational
symmetry. This case can be handled by successively applying the results of finite order
rotational symmetry and those for one plane of symmetry. Assume that each of the rotational
blocks Am of A is further partitioned into two parts A+

m and A−
m consistent with the additional

plane of symmetry. Likewise, the blocks of b are partitioned into b+
m, b−

m and the blocks of
xm are partitioned into x+

m, x−
m. Then the original system of equations can be reduced to

the 2N smaller systems(
N∑

n=1

ei
2π(m−1)(n−1)

N

(
A+

n + A−
n

))
x̂+

m = b̂+
m m = 1, . . . , N (45a)

(
N∑

n=1

ei
2π(m−1)(n−1)

N

(
A+

n − A−
n

))
x̂−

m = b̂−
m m = 1, . . . , N (45b)
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where

b̂+
m =

1
2N

N∑
n=1

e−i
2π(m−1)(n−1)

N (b+
n + b−

n ) (45c)

b̂−
m =

1
2N

N∑
n=1

e−i
2π(m−1)(n−1)

N (b+
n − b−

n ) (45d)

and

x+
m =

N∑
n=1

ei
2π(m−1)(n−1)

N (x̂+
m + x̂−

m) (45e)

x−
m =

N∑
n=1

ei
2π(m−1)(n−1)

N (x̂+
m − x̂−

m). (45f)

If the right-hand-side also has the same symmetry, then it is only necessary to solve the
single system (

N∑
n=1

(
A+

n + A−
n

))
x+

1 = b+
1 (46)

and equate the other blocks x+
m, x−

m to x+
1 .

2.7 Eigenproblems

The symmetry structure of A can also be used to reduce the computational effort in eigen-
problems. Suppose A can be reduced to block diagonal form by S−1AS, i.e.,

S−1AS = diag(Â1, . . . , ÂN). (47)

Let En be the eigenmatrix corresponding to Ân, and let Λn be the corresponding diagonal
matrix of eigenvalues. Then

ÂnEn = EnΛn for all n. (48)

These eigen relations can be combined into the following matrix relation

diag(Â1, . . . , ÂN) · diag(E1, . . . , EN) =
diag(E1, . . . , EN) · diag(Λ1, . . . , ΛN). (49)

In view of equation (47), this relation can be written

S−1AS · diag(E1, . . . , EN) = diag(E1, . . . , EN) · diag(Λ1, . . . , ΛN). (50)

or
AS · diag(E1, . . . , EN) = S · diag(E1, . . . , EN) · diag(Λ1, . . . , ΛN). (51)

Thus, S · diag(E1, . . . , EN) is the eigenmatrix of A corresponding to the eigenvalues along
the diagonal of diag(Λ1, . . . , ΛN).
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